Advertisement

Structural characterization and electrical properties of Nd2O3 by sol–gel method

  • Ramazan Lok
  • Erhan BudakEmail author
  • Ercan Yilmaz
Article

Abstract

In the current study, Neodymium oxide (Nd2O3) was prepared by sol–gel method and deposited on P-type 〈100〉 silicon wafer. The chemical characterization of samples was done by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectra (EDS) and atomic force microscopy (AFM). Nd–O bond formation was proven by FTIR, also cubic- Nd2O3 (c-Nd2O3) phase was detected by XRD. According to EDS analysis, neodymium concentration was approximately 59.41% while oxygen concentration was calculated as 10.21%. The amount of excess oxygen was 9.45% was originated by cristobalite formation. In addition, electrical characterizations of Nd2O3/p-Si MOS capacitor was performed by capacitance–voltage (CV), conductance–voltage G/ωV measurements at different frequencies between 250 kHz and 1 MHz. The maximum value of measured capacitance–voltage (CV) and conductance–voltage (G/ωV) was increased with decreasing in the applied voltage frequencies and after series resistance (Rs) correction, the measured CV and G/ωV characteristics, G/ω behavior started to decrease with rising the frequencies. According to the observed frequency dispersion, the deposited Nd2O3 on P-type 〈100〉 silicon exhibits stable insulation property for future microelectronic applications.

Notes

References

  1. 1.
    H. Bentarzi, Transport in Metal-Oxide-Semiconductor Structures (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  2. 2.
    S.M. Sze, K.K. Ng, Choice Rev. Online 27, 27 (2013)Google Scholar
  3. 3.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 2003)Google Scholar
  4. 4.
    A.B. Ulaşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. 29, 159 (2018)Google Scholar
  5. 5.
    S.A. Yerişkin, G.E. Demir, İ. Yücedag, J. Nanoelectron. Optoelectron. 14, 1126 (2019)CrossRefGoogle Scholar
  6. 6.
    A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, I.E.E.E. Trans, Nucl. Sci. 63, 1284 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Kahraman, E. Yilmaz, J. Vac. Sci. Technol. A 35, 061511 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques Principles, Methods, Equipment and Applications Second Edition (Elsevier, New York, 2002)CrossRefGoogle Scholar
  9. 9.
    T.-M. Pan, J.-D. Lee, W.-H. Shu, T.-T. Chen, Appl. Phys. Lett. 89, 232908 (2006)CrossRefGoogle Scholar
  10. 10.
    Y.Y. Gomeniuk, Y.V. Gomeniuk, A. Nazarov, V.S. Lysenko, H.J. Osten, A. Laha, Adv. Mater. Res. 276, 167 (2011)CrossRefGoogle Scholar
  11. 11.
    A.A. Dakhel, Phys. Status Solidi 201, 745 (2004)CrossRefGoogle Scholar
  12. 12.
    K. Hetherin, S. Ramesh, Y.H. Wong, Appl. Phys. A 123, 510 (2017)CrossRefGoogle Scholar
  13. 13.
    V.S. Dharmadhikari, A. Goswami, Thin Solid Films 87, 119 (1982)CrossRefGoogle Scholar
  14. 14.
    A. Kosola, J. Päiväsaari, M. Putkonen, L. Niinistö, Thin Solid Films 479, 152 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab et al., J. Mater. Sci. 28, 14965 (2017)Google Scholar
  16. 16.
    L. Dimesso, Pechini processes: an alternate approach of the sol–gel method, preparation, properties, and applications, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu (Springer, Cham, 2016).Google Scholar
  17. 17.
    B. Zhaorigetu, G. Ridi, L. Min, J. Alloys Compd. (2007).Google Scholar
  18. 18.
    S. Duhan, P. Aghamkar, M. Singh, Res. Lett. Phys. 2008, 1 (2008)CrossRefGoogle Scholar
  19. 19.
    B. Umesh, B. Eraiah, H. Nagabhushana, S.C. Sharma, D.V. Sunitha, B.M. Nagabhushana, J.L. Rao, C. Shivakumara, R.P.S. Chakradhar, Mater. Res. Bull. 48, 180 (2013)CrossRefGoogle Scholar
  20. 20.
    G.D. Dhamale, V.L. Mathe, S.V. Bhoraskar, S.N. Sahasrabudhe, S.D. Dhole, S. Ghorui, Nanotechnology 27, 085603 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Hirose, M. Hiroshima, T. Yasaka, M. Takakura, S. Miyazaki, Microelectron. Eng. 22, 3 (1993)CrossRefGoogle Scholar
  22. 22.
    H. Xiao, S. Huang, Mater. Sci. Semicond. Process. 13, 395 (2010)CrossRefGoogle Scholar
  23. 23.
    A.O. Cetinkaya, S. Kaya, A. Aktag, E. Budak, E. Yilmaz, Thin Solid Films 590, 7 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Lok, S. Kaya, H. Karacali, and E Yilmaz. J. Mater. Sci 27, 13154 (2016)Google Scholar
  25. 25.
    S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, J. Alloys Compd. 583, 476 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Kimoto, Y. Satoh, H. Tachihara, Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. JAPAN 7 Tr_2_27 (2009).Google Scholar
  27. 27.
    G. Hui, L. Jin, G. Guang-Hua, L. Yu-Xiong, H. Lei, S. Bei-Bei, Chin. Phys. C 33, 774 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Kahraman, E. Yilmaz, S. Kaya, A Aktag. J. Mater. Sci 26, 8277 (2015)Google Scholar
  29. 29.
    D. Korucu, Ş. Altındal, T.S. Mammadov, S. Ozcelik, Optoelectron. Adv. Mat. 2, 525 (2008)Google Scholar
  30. 30.
    L. de Carlan, R. Price, J.-L. Chartier, I. Kodeli, B. Siebert, J. Henninger, J. Posselt, G. Gualdrini, S. Agosteo, R. Bedogni, J.-M. Bordy, P. Cassette, P. Ferrari, J.-M. Gomez Ros, B. Grosswendt, V. Lacoste, A. Pola, S. Rollet, F. Schultz, et al., Radiat. Prot. Dosim. 131, 15 (2008).Google Scholar
  31. 31.
    I. Yücedağ, A. Kaya, Ş. Altındal, I. Uslu, Chin. Phys. B 23, 047304 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Tataroğlu, Ş. Altındal, Microelectron. Eng. 85, 1866 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Kaya, E. Yilmaz, I.E.E.E. Trans, Electron Devices 62, 980 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Tanrıkulu, E. Demirezen, Ş. Altındal, I. Uslu, J. Mater. Sci. 29, 2890 (2018)Google Scholar
  35. 35.
    S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali et al., Mater. Sci. Semicond. Process. 86, 173 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Tataroğlu, Microelectron. Eng. 83, 2551 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Faigon, J. Lipovetzky, E. Redin, G. Krusczenski, I.E.E.E. Trans, Nucl. Sci. 55, 2141 (2008)CrossRefGoogle Scholar
  38. 38.
    A.M. Mahajan, A.G. Khairnar, B.J. Thibeault, Semiconductors 48, 497 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Jaksic, Y. Kimoto, A. Mohammadzadeh, W. Hajdas, I.E.E.E. Trans, Nucl. Sci. 53, 2004 (2006)CrossRefGoogle Scholar
  40. 40.
    A. Haran, M. Murat, J. Barak, D. David, Charge Yield and Total Ionizing Dose Measurements, in 9th European Conference on Radiation and Its Effects on Components and Systems (IEEE), p. 1 (2007).Google Scholar
  41. 41.
    P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid. State. Electron. 62, 44 (2011)CrossRefGoogle Scholar
  42. 42.
    D. Panda, T.-Y. Tseng, Thin Solid Films 531, 1 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Shahjahan, N. Takahashi, K. Sawada, M. Ishida, Jpn. J. Appl. Phys. 41, L1474 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Art and ScienceBolu Abant Izzet Baysal UniversityBoluTurkey
  2. 2.Center for Nuclear Radiation Detector Research and ApplicationsBolu Abant Izzet Baysal UniversityBoluTurkey
  3. 3.Department of Chemistry, Faculty of Art and ScienceBolu Abant Izzet Baysal UniversityBoluTurkey

Personalised recommendations