Advertisement

3D segregated architecture BaTiO3/polystyrene composites with enhanced dielectric constant fabricated via hot pressing core–shell polystyrene@BaTiO3 composite microspheres

  • Jian Ye
  • Biao ZhangEmail author
  • Yicheng Jin
  • Haoqian Zhang
  • Yingjie Qiao
  • Zhiguo Zhang
Article
  • 19 Downloads

Abstract

How to obtain high dielectric constant using low filler content is one of the urgent problems to be solved in the research field of ceramic/polymer dielectric materials. In traditional methods (fillers are randomly distributed), filler particles are isolated by thick layers of polymers (with low dielectric constant), which usually result in ultra-low enhancement efficiencies of dielectric constant for the composites. To solve the above puzzle, this study provides a new strategy to improve the dielectric constant of ceramic/polymer composites, that is constructing 3D segregated architectures of BaTiO3 (BT networks) in polystyrene (PS) matrix. This strategy is expected to enhance dielectric interaction between BT particles and greatly improve the dielectric constant of BT/PS composites. In this method, PS@BT core–shell microspheres were firstly fabricated by electrostatic self-assembling the BT particles on PS microspheres. BT/PS composites with BT networks were constructed by hot pressing above core–shell microspheres. Microstructures of PS@BT microspheres and BT/PS composites were investigated. Dielectric properties of BT/PS composites with various BT contents were studied. Results show that dielectric constant of the BT/PS composites is up to 41.8 when BT content is only 30vol%, which is much higher than that of traditional composites. This research provides us a facile method to design and fabricate ceramic/polymer composites with high dielectric constant and low loss.

Keywords

High dielectric Core–shell Polymer matrix composite BaTiO3 

Notes

Acknowledgements

This work was supported by Chinese Postdoctoral Science Foundation (Grant No. 2018M631925), Heilongjiang Postdoctoral Fund (Grant No. LBH-Z17089) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2019004).

Supplementary material

10854_2020_2856_MOESM1_ESM.docx (37 kb)
Supplementary file1 (DOCX 37 kb)

References

  1. 1.
    P. Banerjee, A. Franco Jr., Substitution-induced near phase transition with Maxwell–Wagner polarization in SrBi2(Nb1−xAx)2O9 ceramics [A = W,Mo and x = 0, 0.025]. Phys. Status Solidi A 214, 1700067 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Banerjee, A. Franco Jr., Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics. J. Mater. Sci. 28, 8562–8568 (2017)Google Scholar
  3. 3.
    M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)CrossRefGoogle Scholar
  4. 4.
    P. Banerjee, A. Franco Jr., Enhanced dielectric and magnetic properties in multiferroic Bi0.99Y0.01Fe0.99Ni0.01O3 ceramic. Mater. Lett. 184, 17–20 (2016)CrossRefGoogle Scholar
  5. 5.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019)CrossRefGoogle Scholar
  7. 7.
    S. Aboubakr, A. Hajjaji, M. Rguiti, K. Benkhouja, C. Courtois, A high dielectric composite for energy storage application. Int. J. Hydrogen Energy 42, 19504–19511 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Barberjee, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009)CrossRefGoogle Scholar
  9. 9.
    L. Wang, H. Luo, X.F. Zhou, X. Yuan, K.C. Zhou, D. Zhang, Sandwich-structured all-organic composites with high breakdown strength and high dielectric constant for film capacitor. Compos. A 117, 369–376 (2019)CrossRefGoogle Scholar
  10. 10.
    G. Gallone, F. Carpi, D.D. Rossi, G. Levita, A. Marchetti, Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobite-lead titanate. Mater. Sci. Eng. C 27, 110–116 (2007)CrossRefGoogle Scholar
  11. 11.
    M.O. Aydogdu, N. iEkren, M. Suleymanoglu, E.K. Serap, C.C. Lin, E. Bulbul, N. Oktar, U.K. Terzi, O. Kilic, O. Gunduz. Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications. Colloid. Surf. B 172, 718–727 (2018)CrossRefGoogle Scholar
  12. 12.
    F. Liu, J.J. Qu, H.G. Yan, C.L. Yuan, R.F. Ma, H.L. Li, C.R. Zhou, G.H. Chen. Phase structures, microstructures, and dielectric characteristics of high εr (1−x−y)Bi0.5Na0.5TiO3−xLi0.5Sm0.5TiO3–yNa0.5La0.5TiO3 microwave ceramic systems. Ceram. Int. 15, 7839–7849 (2019)Google Scholar
  13. 13.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.F. Chen, Y.Z. Wu, G.Q. Dai, Y.Y. Ma, Effect of functionalized graphene on mechanical properties and dielectric constant of bismaleimide composites. J Mater Sci 30, 6234–6241 (2019)Google Scholar
  15. 15.
    Y.F. Chen, Y.Z. Wu, C.B. Geng, Z.G. Li, G.Q. Dai, W.W. Cui, Curing Kinetics and the properties of KH560-SiO2/polyethersulfone/bismaleimide-phenolic epoxy resin composite. J. Inorg. Organomet. Polym. Mater. (2019).  https://doi.org/10.1007/s10904-019-01290-1 CrossRefGoogle Scholar
  16. 16.
    X.Y. Huang, B. Sun, Y.K. Zhu, S.T. Li, P.K. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019)CrossRefGoogle Scholar
  17. 17.
    P. Banerjee, S.K. Biswas, Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements. J. Microw. Power Electromagn. Energy 45, 24–29 (2011)CrossRefGoogle Scholar
  18. 18.
    B. Zhang, F. Ye, Y. Gao, S.C. Liu, Q. Liu, D. H. Ding. D Fabrication and dielectric properties of BADCy/Ni0.5Ti0.5NbO4 composites for ultra-low-loss printed circuit board application. Ceram. Int. 42, 234–241 (2016)Google Scholar
  19. 19.
    Z.M. Dang, Y.F. Yu, H.P. Xu, J.B. Bai, Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos. Sci. Technol. 68, 171–177 (2008)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, M.R. Fang, H.J. Li, Y.F. Wen, C. Wang, Y.P. Pu, Enhanced dielectric properties in poly (vinylidene fluoride) composites by nanosized Ba(Fe0.5Nb0.5)O3 powders. Compos. Sci. Technol. 117, 410–416 (2015)Google Scholar
  21. 21.
    C. Yang, H.S. Song, D.B. Liu, Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Compos. B 50, 180–186 (2013)CrossRefGoogle Scholar
  22. 22.
    R. K. Goyal, S.S. Katkade, D.M. Mule. Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Compos. B 44, 128–132 (2013)CrossRefGoogle Scholar
  23. 23.
    W. Wan, J.R. Luo, C.E. Huang, J. Yang, Y.B. Feng, W.X. Yuan, Y.J. Ouyang, D.Z. Chen, T. Qiu, Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility. Ceram. Int. 44, 5086–5092 (2018)CrossRefGoogle Scholar
  24. 24.
    G.M. Odegard, Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)CrossRefGoogle Scholar
  25. 25.
    J.W. Merz, The dielectric behavior of BaTiO3 single-domain crystals. Phys. Rev. 75, 687 (1949)CrossRefGoogle Scholar
  26. 26.
    Z.F. Zhang, X.F. Bai, J.W. Zha, W.K. Li, Z.M. Dang, Preparation and dielectric properties of BaTiO3/epoxy nanocomposites for embedded capacitor application. Compos. Sci. Technol. 97, 100–105 (2014)CrossRefGoogle Scholar
  27. 27.
    Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, J. Bai, Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films. Adv. Funct. Mater. 18, 1509–1517 (2008)CrossRefGoogle Scholar
  28. 28.
    D.W. Kim, B.K. Kim, H.J. Je, J.G. Park, Direct assembly of BaTiO3-polymethylmethacrylate nanocomposite films. Macromol. Rapid Commun. 27, 1821–1825 (2006)CrossRefGoogle Scholar
  29. 29.
    K. Yang, X.Y. Huang, L.Y. Xie, C. Wu, P.K. Jiang, T. Tanaka, Core-Shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol. Rapid Commun. 33, 1921–1926 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Zhang, F. Ye, Y. Gao, Q. Liu, S.C. Liu, L.M. Liu. Dielectric properties of BADCy/Ni0.5Ti0.5NbO4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Compos. Sci. Technol. 119, 75–84 (2015)Google Scholar
  31. 31.
    S.B. Luo, Y.B. Shen, S.H. Yu, Y.J. Wan, W.H. Liao, R. Sun, C.P. Wong, Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10, 137–144 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Jiang, Y.J. Liu, P. Ming, G.X. Sui, BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Compos. Sci. Technol. 144, 63–69 (2017)CrossRefGoogle Scholar
  33. 33.
    T. Thongtem, N. Tipcompora, A. Phuruangratb, S. Thongtem, Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Mater. Lett. 64, 510–512 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.P. Shen, A.J. Gu, G.Z. Liang, L. Yuan, High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance. Compos. A 41, 1668–1676 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Yang, L. Szyc, T. Elsaesser, Femtosecond two-dimensional infrared spectroscopy of adenine-thymine base Pairs in DNA oligomers. J. Phys. Chem. B 115, 1261–1267 (2011)Google Scholar
  36. 36.
    W.L. Wei, K.G. Qu, J.S. Jin, X.G. Qu, Chiral detection using reusable fluorescent amylose-functionalized graphene. Chem. Sci. 2, 2050–2056 (2011)CrossRefGoogle Scholar
  37. 37.
    F.R. Shan, Z.M. Yu, L.S. Luo, Y. Zhang, Study on surface modification of nano-alumina by silane coupling agent KH550. New Chem. Mater. 41, 169–185 (2013)Google Scholar
  38. 38.
    A.S. Ethiraj, D.J. Kang, Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70–74 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.Institute for Advanced Ceramics, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.Department of PhysicsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations