Advertisement

Preparation and photoelectric properties of praseodymium-doped cuprous oxide thin films

Abstract

Pr-doped Cu2O films were deposited on Cu sheet substrates by hydrothermal method with different doping concentrations of Pr(NO3)3. The result shows that undoped and Pr-doped Cu2O thin films are all p-type semiconductors. Compared with undoped Cu2O, the photovoltage, photocurrent density, and carrier concentration of Pr-doped Cu2O increase to 0.4401 V, 1.1 mA/cm2, and 9.66 × 1019 cm−3, respectively. And the increments are 0.0828 V, 0.52 mA/cm2, and 8.931 × 1019 cm−3, respectively. The increments of the capacitances of Pr doping modification illustrate that Pr element has a strong passivation effect on the composite of electrons and holes, thus improving the photoelectric performance of Cu2O. The preferential growth surface of Pr-doped Cu2O film is (111) and (200), and the crystallinity of (111) plane is optimal. After doping modification, the grain size of Pr-doped Cu2O is increased and the particle size is relatively uniform. The mass percentage of Pr element is 0.46% and the forbidden band width reduces from 2.02 to 1.83 eV. XPS peak fitting of Pr-doped Cu2O indicates that Pr element is doped into Cu2O film.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    J. Juodkazyte, B. Sebeka, I. Savickaja, V. Pakstas, A. Naujokaitis, A. Griguceviciene, Study on charge tra-nsfer processes in thin-film heterojunction between cuprous oxide and hematite. Mater. Sci. Semicond. Process. 80, 56–62 (2018)

  2. 2.

    H.J. Wu, N. Tomiyama, H. Nagai, Fabrication of a p-type Cu2O thin-film via UV-irradiation of a patternable molecular-precursor film containing Cu(II) complexes. J. Cryst. Growth 509, 112–117 (2019)

  3. 3.

    A.A. Akl, S.A. Mahmoud, S.M. Al-Shomar, A.S. Hassanien, Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin film of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 74, 183–192 (2018)

  4. 4.

    R.P. Wijesundera, L.K.A.D.D.S. Gunawardhana, W. Siripala, Electrodeposited Cu2O homojunctionsolar cells: Fabrication of a cell of high short circuit pho-tocurrent. Sol. Energy Mater. Sol. Cells 157, 881–886 (2016)

  5. 5.

    X.J. Yu, J. Zhang, X.Y. Tang, Preparation and performance of non-enzymatic glucose sensor elect-rode based on nanometer cuprous oxide. Nanostruct. Mater. 8, 1–9 (2018)

  6. 6.

    K.P. Musselman, A. Wisnet, D.C. Iza, H.C. Hosse, C. Scheu, Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv. Mater. 22(35), E254–E258 (2010)

  7. 7.

    Y. Nishi, T. Miyata, T. Minami, Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications. Sol. Energy Mater. Sol. Cells 155, 405–410 (2016)

  8. 8.

    Y.H. Zhang, X.L. Cai, D.Y. Guo, H.J. Zhnag, N. Zhou, S.M. Fang, J.L. Chen, H.L. Zhang, Oxygen vacancies in concave cubes Cu2O-reduced graphene oxide heterojunction with enhanced photocatalytic H2 prod-uction. J. Mater. Sci. 30, 7182–7193 (2019)

  9. 9.

    X.L. Du, Z.Q. Qian, J.J. Pan, X. Chen, L. Lin, Q.Q. Ni, J.M. Yao, Silk sericin-assisted synthesis of architecture porous copper@cuprous oxide hybrid microspheres with enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 86, 157–163 (2018)

  10. 10.

    T.F. Jiang, T.F. Xie, W.S. Yang, H.M. Fan, D.J. Wang, Photoinduced charge transfer process in p-Cu2O/n-Cu2O homojunction film and its photoelectric gas-sensing properties. J. Colloid Interface Sci. 405, 242–248 (2013)

  11. 11.

    F.R. Juang, W.C. Cherm, Octahedral Cu2O nanopar-ticles decorated by silver catalyst for high sensitivity nonenzymatic H2O2 detection. Mater. Sci. Semicond. Process. 101, 156–163 (2019)

  12. 12.

    D.Q. Liu, Z.B. Yang, P. Wang, Preparation of 3D n-anoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale 5(5), 1917–1921 (2013)

  13. 13.

    L.Y. Li, Y.H. Cheng, W.H. Wang, S.H. Ren, Y.T. Yang, X.G. Lou, H. Liu, Effects of copper and oxygen vacancies on the ferromagnetism of Mn- and Co-doped Cu2O. Solid State Commun. 151(21), 1583–1587 (2011)

  14. 14.

    K. Lee, C.H. Lee, J.Y. Cheong, S.K. Lee, H.I. Joh, D.C. Lee, Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectron chemical water splitting. Korean J. Chem. Eng. 34(12), 1–6 (2017)

  15. 15.

    Q.Y. Xi, G. Gao, M.J. Jin, M.Y. Zhang, Y.Q. Zhou, H. Wu, Design of graphitic carbon nitride supported Ag-Cu2O composites with hierarchical structures for enhanced photocatalytic properties. Appl. Surf. Sci. 471, 714–725 (2019)

  16. 16.

    G. Lai, Y. Wu, L. Lin, Y. Qu, F.C. Lei, Low resistivity of N-doped Cu2O thin films deposited by rf-magnetron sputtering. Appl. Surf. Sci. 285, 755–758 (2013)

  17. 17.

    F. Hu, Y. Zou, L. Wang, Y. Wen, Y.J. Xiong, Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition. Int. J. Hydrog. Energy 41, 15172–15180 (2016)

  18. 18.

    L. Yu, L.B. Xiong, Y. Yu, Cu2O homojunction solar cells: F-doped N-type thin film and highly impr-oved efficiency. J. Phys. Chem. C 119(40), 22803–22811 (2015)

  19. 19.

    A. Cetin, M. Okutan, O. Icelli, S.E. San, Electrical and optical properties of chalcedony and striped chalc-edony. Vacuum 97, 75–80 (2013)

  20. 20.

    S. Tixier, M. Adamcyk, T. Tiedje, Molecular beam epitaxy growth of GaAs1−xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)

  21. 21.

    Y.Y. Jiang, Y. Li, Y.P. Gao, F.X. Zhong, Photoelectric properties of Cu2O thin films prepared by room-temperature water bath. Mater. Res. 4(3), 036404 (2017)

  22. 22.

    J.L. Chen, N. Devj, N. Li, D.J. Fu, X.W. Ke, Synthesis of Pr-doped ZnO nanoparticles: their structural, optical, and photocatalytic properties. J. Phys. Chem. B 27(08), 086102-1–086102-7 (2018)

  23. 23.

    C.L. Wang, H. Tissot, C. Escudero, V. Perez-dieste, D. Stacchiola, J. Weissenrieder, Redox properties of Cu2O (100) and (111) surfaces. J. Phys. Chem. C 122(50), 28684–28691 (2018)

  24. 24.

    Y.Y. Jiang, Y. Li, D.Y. Wang, F.X. Zhong, Photovolt-aic performance of an alternating cold–hot method deposited CdSe thin films. Micro Nano Lett. 12(6), 391–395 (2017)

  25. 25.

    J.J. Jing, Z. Mu, H.M. Xing, Q.N. Wu, X.Z. Yue, Y.H. Lin, Insights into the synergetic effect for enhanced UV/visible-light activated. Appl. Surf. Sci. 478, 1037–1045 (2019)

  26. 26.

    Z.B. Wu, X.Z. Yuan, G.M. Zeng, L.B. Jiang, H. Zhong, Y.C. Xie, H. Wang, X.H. Chen, H. Zhong, Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Appl. Catal. B 225, 8–21 (2018)

  27. 27.

    B.F. Xin, P. Wang, D.D. Ding, J. Liu, Z.Y. Ren, H.G. Fu, Effect of surface species on Cu–TiO2 photocatalytic activity. Appl. Surf. Sci. 254, 2569–2574 (2008)

  28. 28.

    A. Fattahalhosseini, Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model. Arabian J. Chem. 9(7), S1342–S1348 (2016)

  29. 29.

    Z.H. Zhang, P. Wang, Highly stable copper oxide com-posite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22(6), 2456–2464 (2012)

  30. 30.

    W.Y. Yuan, J. Yuan, J.L. Xie, C.M. Li, Polymer-med-iated self-assembly of TiO2@Cu2O core-shell nanowire array for highly efficient photoelect-rochemical water oxidation. ACS Appl. Mater. Interfaces 8(9), 6082–6092 (2016)

  31. 31.

    S. Huang, W. Luo, Z. Zou, Band positions and photo-electrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J. Phys. D 46(23), 23510801–23510806 (2013)

  32. 32.

    W. Li, H. Wang, Z. Liu, X. Chen, P.X. Han, A facile method of preparing mixed conducting LiFePO4/gra-phene composites for lithium-ion batteries. Solid State Ion. 181(37), 1685–1689 (2010)

  33. 33.

    Y.R. Wang, Y.F. Yang, Y.B. Yang, H.X. Shao, Enha-nced electrochemical performance of unique morpho-logical LiMnPO4/C cathode material prepared by solvothermal method. Solid State Commun. 150(1), 81–85 (2010)

  34. 34.

    L.X. Li, X.C. Tang, H.T. Liu, Morphological solution for enhancement of electrochemical kinetic perform-ance of LiFeO4. Electrochim. Acta 56, 995–999 (2010)

  35. 35.

    M.A. Pasquale, L.M. Gassa, A.J. Arvia, Copper electr-odeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochim. Acta 53(20), 5891–5904 (2008)

  36. 36.

    I. Zarazua, T. Lopez-Luke, J. Reyes-Gomez, Imped-ance analysis of CdSe quantum dot-sensitized TiO2 solar cells decorated with Au nanoparticles and P3OT. J. Electrochem. Soc. 161, H68–H74 (2013)

Download references

Acknowledgements

We gratefully thank the financial support by the National Natural Science Foundation of China (Nos. 61264007 and 61765005).

Author information

Correspondence to Fu-xin Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, Y., Wu, Y. et al. Preparation and photoelectric properties of praseodymium-doped cuprous oxide thin films. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02855-4

Download citation