Advertisement

Improved ethanol gas-sensing properties of optimum Fe–ZnO mesoporous nanoparticles

  • 7 Accesses

Abstract

Fe-doped ZnO (Fe–ZnO) mesoporous nanoparticles have been synthesized via a facile hydrothermal method, which utilizes pluronic triblock copolymer polyethylene glycol–polypropylene glycol–polyethylene glycol (PEO-PPO-PEO) as the pore-forming agent. Fe–ZnO composites have an unique porous structure. Their pore sizes increase with Fe-doping concentration and reach a maximum as Fe concentration is 15 at.%; the specific surface area of synthesized mesoporous Fe–ZnO nanoparticles reaches a maximum as the Fe concentration is about 11 at.%. Electron microscopy, vapor pressure isotherm measurements and photoluminescence (PL) were used to characterize synthesized Fe–ZnO composites. Fe–ZnO-based gas sensors exhibit excellent response in detecting ethanol; the sensing response of Fe(11 at.%)–ZnO reaches 319.8, which is significantly higher than most of the ZnO-based gaseous sensors. The improved sensitivity is ascribed to the increase of oxygen-related defects and specific surface area of Fe–ZnO composites.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    X. Liu, G. Wang, A. Ng et al., Appl. Surf. Sci. 357, 2169–2175 (2015)

  2. 2.

    C.Y. Liu, H.Y. Xu, Y. Sun et al., OPT Express 22, 16731–16737 (2014)

  3. 3.

    S. Luo, Y. Shen, Z. Wu et al., Mater. Sci. Semicond. Process. 41, 535–543 (2016)

  4. 4.

    S. Park, S. Kim, H. Ko, C. Lee, J. Electro. Ceram. 33(1–2), 75–81 (2014)

  5. 5.

    Z.Q. Zheng, J.D. Yao, B. Wang, G.W. Yang, Sci. Rep. 5, 11070 (2015)

  6. 6.

    L. Zhu, Y. Li, W. Zeng, Appl. Surf. Sci. 427, 281–287 (2018)

  7. 7.

    F. Cao, C. Li, M. Li et al., Appl. Surf. Sci. 447, 173–181 (2018)

  8. 8.

    L. Wang, Y. Kang, X. Liu et al., Sens. Actuators B 162, 237–243 (2011)

  9. 9.

    C.T. Quy, C.M. Hung, N. Duy et al., J. Electron. Mater. 46, 3406–3411 (2017)

  10. 10.

    N. Saito, K. Watanabe, H. Haneda et al., J. Phys. Chem. C 122, 7353–7360 (2018)

  11. 11.

    K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Microporous Mesoporous Mater. 134(1–3), 195–202 (2010)

  12. 12.

    N. Han, L. Chai, Q. Wang et al., Sens. Actuators B 147, 525–530 (2010)

  13. 13.

    G. He, M. Jiang, B. Li et al., J. Mater. Chem. C 5, 10938–10946 (2017)

  14. 14.

    A.B. Khatibani, M. Abbasi, J. Sol-Gel Sci. Technol. 86(2), 255–265 (2018)

  15. 15.

    Ganesh RS, Patil VL, Durgadevi E, et al. (2019) Chem. Phys. Lett. 136725***.

  16. 16.

    M. Boshta, E. Chikoidze, M. Sayed et al., J. Mater. Sci. Lett. 49, 7943–7948 (2014)

  17. 17.

    S. Chattopadhyay, T.K. Nath, A.J. Behan et al., J. Magn. Magn. Mater. 323, 1033–1039 (2011)

  18. 18.

    M.L. Dinesha, H.S. Jayanna, S. Ashoka, G.T. Chandrappa, J. Alloy Compd. 485(1–2), 538–541 (2009)

  19. 19.

    L. Zhang, B. Dong, L. Xu et al., Sens. Actuators B 252, 367–374 (2017)

  20. 20.

    V. Postica, I. Hölken, V. Schneider et al., Mater. Sci. Semicond. Process. 49, 20–33 (2016)

  21. 21.

    A. Khayatian, S. Safa, R. Azimirad et al., Physica E 84, 71–78 (2016)

  22. 22.

    Y. Shen, S. Luo, Z. Wu et al., J. Mater. Sci. 27, 12660–12668 (2016)

  23. 23.

    J. Tan, J. Chen, K. Liu, X. Huang, Sens. Actuators B 230, 46–53 (2016)

  24. 24.

    M.A.R. Miranda, J.M. Sasaki, Acta Crystallogr. A 74(1), 54–65 (2018)

  25. 25.

    S. Bai, T. Guo, Y. Zhao et al., Sens. Actuators B 195, 657–666 (2014)

  26. 26.

    S.T. Mun et al., J. Ceram. Soc. 119(1390), 517–521 (2011)

  27. 27.

    L. Luo, W. Tao, X. Hu et al., J. Power Sources 196, 10518–10525 (2011)

  28. 28.

    J. Liu, Y. Lu, X. Cui et al., Sens. Actuators B 248, 862–867 (2017)

  29. 29.

    X. Wang, Y. Zhang, C. Hao et al., Ind. Eng. Chem. Res. 53, 6585–6592 (2014)

  30. 30.

    Groen JC, Peffer LA, Pérez-Ramı́rez J (2003) Microporous Mesoporous Mater. 60(1–3), 1–17.

  31. 31.

    L. Zhang, J. Zhao, H. Lu et al., Sens. Actuators B 171, 1101–1109 (2012)

  32. 32.

    Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Sens. Actuators 208, 112–121 (2015)

  33. 33.

    X. Li, J. Wei, J. Xu et al., J. Nanopart. Res. 19, 1–11 (2017)

  34. 34.

    F.J. Ren, X.B. Yu, Y.H. Ling, J.Y. Feng, Int. J. Min. Met. Mater. 19, 461–466 (2012)

  35. 35.

    J. Xu, S. Li, L. Li, L. Chen, Y. Zhu, Ceram. Int. 44(14), 16773–16780 (2018)

  36. 36.

    R. Vyas, P. Kumar, J. Dwivedi et al., RSC Adv. 4, 54953–54959 (2014)

  37. 37.

    S. Huang, T. Wang, Q. Xiao, J. Phys. Chem. Solids 76, 51–58 (2015)

  38. 38.

    A. Rambu, C. Doroftei, L. Ursu, F. Iacomi, J. Mater. Sci. Lett. 48, 4305–4312 (2013)

  39. 39.

    Y. Cai, H. Fan, M. Xu et al., Cryst. Eng. Commun. 15, 7339–7345 (2013)

  40. 40.

    S.Y. Seo, C.H. Kwak, S.H. Kim et al., J. Cryst. Growth 312, 2093–2097 (2010)

  41. 41.

    C. Zhao, C. Shao, X. Li et al., J. Alloy Compd. 747, 916–925 (2018)

  42. 42.

    N. Han, P. Hu, A. Zuo et al., Sens. Actuators B 145, 114–119 (2010)

  43. 43.

    O.M. Lemine, M. Bououdina, M. Sajieddine et al., Phys B 406, 1989–1994 (2011)

  44. 44.

    A. Silambarasu, A. Manikandan, K. Balakrishnan, J. Supercond. Nov. Magn. 30(9), 2631–2640 (2017)

  45. 45.

    A. Yu, J. Qian, H. Pan et al., Sens. Actuators B 158, 9–16 (2011)

  46. 46.

    A. Sahai, Y. Kumar, V. Agarwal et al., J. Appl. Phys. 116, 164315 (2014)

Download references

Author information

Correspondence to Yue Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, Q., Li, T. et al. Improved ethanol gas-sensing properties of optimum Fe–ZnO mesoporous nanoparticles. J Mater Sci: Mater Electron (2020) doi:10.1007/s10854-019-02852-2

Download citation