Advertisement

Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film

  • Cristian RavariuEmail author
  • Dan Eduard Mihaiescu
  • Alina Morosan
  • Daniela Istrati
  • Bogdan Purcareanu
  • Rodica Cristescu
  • Roxana Trusca
  • Bogdan Stefan Vasile
Article
  • 21 Downloads

Abstract

We report the first successful green synthesis route for organic transistors based on para-aminobenzoic acid (PABA) grafted to ferrite nanoparticles, at room temperature. The obtained core–shell nanoparticles (NCS) have been investigated by DLS, FT-IR, SEM, TEM. Both average hydrodynamic diameter and zeta potential of synthesized PABA-NCS nanoparticles has been identified, indicating a good stability of this nano-compound. SEM analysis proved a heterogeneous structured material with quasi-uniform granular formations in size, while TEM revealed a ferrite core of 20 nm. The measurements of output characteristics in the saturation regime and transfer characteristics at negative gate voltages have proved that an organic transistor based on PABA-NCS has been accomplished. The current increasing over a negative threshold voltage demonstrated an accumulation channel onset in the PABA-NCS thin film. This is a final argument for the p-type behavior of the PABA-NCS film.

Notes

Acknowledgements

This work has been funded by the Romanian National Authority for Scientific Research and Innovation, CNCS UEFISCDI, Projects No. PN-III-P4-ID-PCE-2016-0480 (4/2017 - TFTNANOEL) and PN-III-P4-ID-PCE-2016-0884 (142/2017 - BIOMATE) within PNCDI III and 16 N / 08.02.2019 –LAPLAS VI within NUCLEU Programme.

References

  1. 1.
    H.C. Wu, M.C. Chiu, C.W. Peng, Visual fatigue occurrence time when using hand-held intelligent devices. J. Ambient Intell. Humaniz. Comput. 7(6), 829–835 (2016).  https://doi.org/10.1007/s12652-016-0356-5 CrossRefGoogle Scholar
  2. 2.
    H. Hu, J. Zhu, M. Chen, T. Guo, F. Li, Inkjet-printed p-type nickel oxide thin-film transistor. Appl. Surf. Sci. 441, 295–302 (2018).  https://doi.org/10.1016/j.apsusc.2018.02.049 CrossRefGoogle Scholar
  3. 3.
    M. Katsuhara, I. Yagi, A. Yumoto, M. Noda, N. Hirai, R. Yasuda, T. Moriwaki, S. Ushikura, A. Imaoka, T. Urabe, K. Nomoto, A flexible OLED display with an OTFT backplane made by scalable manufacturing process. J. Soc. Inf. Display 18, 399–404 (2010).  https://doi.org/10.1889/jsid18.6.399 CrossRefGoogle Scholar
  4. 4.
    J. Huang, Z. Gu, X. Zhang, G. Wu, H. Chen, Lead-free (CH3NH3)3Bi2I9 perovskite solar cells with fluorinated PDI films as organic electron transport layer. J. Alloys Compd. 767, 870–876 (2018).  https://doi.org/10.1016/j.jallcom.2018.07.185 CrossRefGoogle Scholar
  5. 5.
    S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316–10317 (2007).  https://doi.org/10.1021/ja0730516 CrossRefGoogle Scholar
  6. 6.
    D. Yang, L. Zhang, H. Wang, Y. Wang, Z. Li, T. Song, C. Fu, S. Yang, B. Zou, Pentacene-based photodetector in visible region with vertical field-effect transistor configuration. IEEE Photonics Technol. Lett. 27, 233–236 (2015).  https://doi.org/10.1109/LPT.2014.2365498 CrossRefGoogle Scholar
  7. 7.
    L. Xue, F. Meng, D. Ren, S. Luo, Top-gate In–Al–Zn–O thin film transistor based on organic poly(methyl methacrylate) dielectric layer. J. Mater. Sci.: Mater. Electron. 30, 11976 (2019).  https://doi.org/10.1007/s10854-019-01548-x CrossRefGoogle Scholar
  8. 8.
    H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).  https://doi.org/10.1016/j.ejpe.2015.03.011 CrossRefGoogle Scholar
  9. 9.
    D.N. Das, P.K. Panda, P.P. Naik, S. Mukhopadhyay, N. Sinha, S.K. Bhutia, Phytotherapeutic approach: a new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol. Mech. Methods 27, 1–17 (2017).  https://doi.org/10.1080/15376516.2016.1268228 CrossRefGoogle Scholar
  10. 10.
    P. Mukhopadhyay, S. Maity, S. Mandal, A.S. Chakraborti, A.K. Prajapati, P.P. Kundu, Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 182, 42–51 (2018).  https://doi.org/10.1016/j.carbpol.2017.10.098 CrossRefGoogle Scholar
  11. 11.
    M. Sağlam, M. Biber, A. Türüt, M.S. Ağιrtaş, M. Çakar, Determination of the characteristic parameters of polyaniline/p-type Si/AI structures from current-voltage measurements. Int. J. Polym. Mater. 54, 805–813 (2005).  https://doi.org/10.1080/00914030490463151 CrossRefGoogle Scholar
  12. 12.
    L.B. Zhao, Y.F. Huang, X.M. Liu, J.R. Anema, D.Y. Wu, B. Ren, Z.Q. Tian, A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys. Chem. Chem. Phys. 14, 12919–12929 (2012).  https://doi.org/10.1039/C2CP41502J CrossRefGoogle Scholar
  13. 13.
    M. Sheikhi, S. Shahab, L. Filippovich, M. Khaleghian, E. Dikusar, M. Mashayekhi, Interaction between new synthesized derivative of (E, E)-azomethines and BN(6,6–7) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct 1146, 881–888 (2017).  https://doi.org/10.1016/j.molstruc.2017.06.017 CrossRefGoogle Scholar
  14. 14.
    S. Cogal, G.C. Cogal, A.U. Oksuz, Plasma-modified multiwalled carbon nanotubes with polyaniline for glucose biosensor applications. Int. J. Polym. Mater. 67, 454–461 (2018).  https://doi.org/10.1080/00914037.2017.1342252 CrossRefGoogle Scholar
  15. 15.
    A.K. Chaudhari, B.E. Souza, J.-C. Tana, Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature featured. APL Mater. 7, 081101 (2019).  https://doi.org/10.1063/1.5108948 CrossRefGoogle Scholar
  16. 16.
    M. Keikhaei, M. Ichimura, Fabrication of Mg(OH)2 thin films by electrochemical deposition with Cu catalyst. Thin Solid Films 681, 41–46 (2019).  https://doi.org/10.1016/j.tsf.2019.04.046 CrossRefGoogle Scholar
  17. 17.
    R.B. Figueira, C.J.R. Silva, E.V. Pereira, Influence of experimental parameters using the dip-coating method on the barrier performance of hybrid sol-gel coatings in strong alkaline environments. Coatings 5, 124–141 (2015).  https://doi.org/10.3390/coatings5020124 CrossRefGoogle Scholar
  18. 18.
    Q.H. Tan, Q.J. Wang, Y.K. Liu, J.S. Shi, S.Q. Jiang, H.L. Yan, Top electrode-dependent retention characteristics of thin-film transistors with carbon nanotube/(Bi, Nd)4Ti3O12 structure. Mater. Des. 100, 241–244 (2016).  https://doi.org/10.1016/j.matdes.2016.04.003 CrossRefGoogle Scholar
  19. 19.
    L. Muresan, E.J. Popovici, A.R. Tomsa, L. Silaghi-Dumitrescu, L. Barbu-Tudoran, E. Indrea, Preparation by dip coating method and characterisation of WO3 thin films. J. Optoelectron. Adv. Mater. 10, 2261–2264 (2008)Google Scholar
  20. 20.
    X. Tang, X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications. J. Sol-Gel Sci. Technol. 81, 378–404 (2016).  https://doi.org/10.1007/s10971-016-4197-7 CrossRefGoogle Scholar
  21. 21.
    J. Grolleau, F. Gohier, M. Allain, S. Legoupy, C. Cabanetos, P. Frère, Rapid and green synthesis of complementary D-A small molecules for organic photovoltaics. Org. Electron. 42, 322–328 (2017).  https://doi.org/10.1016/j.orgel.2016.12.046 CrossRefGoogle Scholar
  22. 22.
    S. Solar, N. Getoff, R. Zona, W. Solar, Oxidation of ortho- and para-aminobenzoic acid. A pulse radiolysis-and gamma radiolysis study. Radiat. Phys. Chem. 80, 932–936 (2011).  https://doi.org/10.1016/j.radphyschem.2011.04.004 CrossRefGoogle Scholar
  23. 23.
    H. El Ghandoor, H.M. Zidan, M.M.H. Khalil, M.I.M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012)Google Scholar
  24. 24.
    R.S. Gaikwad, S.-Y. Chae, R.S. Mane, S.-H. Han, O.-S. Joo, Cobalt ferrite nanocrystallites for sustainable hydrogen production application. Int. J. Electrochem. 2011. Article ID 729141:1–6. https://doi.org/10.4061/2011/729141 CrossRefGoogle Scholar
  25. 25.
    W. Wu, C. Jiang, V.A.L. Roy, Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7(1), 38–58 (2015).  https://doi.org/10.1039/C4NR04244A CrossRefGoogle Scholar
  26. 26.
    Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019).  https://doi.org/10.1016/j.electacta.2019.05.073 CrossRefGoogle Scholar
  27. 27.
    Ö. Metin, Ş. Aydoğan, K. Meral, A new route for the synthesis of graphene oxide–Fe3O4 (GO–Fe3O4) nanocomposites and their Schottky diode applications. J. Alloys Compd. 585(5), 681–688 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Tsuchiya, K. Terabe, M. Ochi, T. Higuchi, M. Osada, Y. Yamashita, S. Ueda, M. Aono, In situ tuning of magnetization and magnetoresistance in Fe3O4 thin film achieved with all-solid-state redox device. ACS Nano 10(1), 1655–1661 (2016).  https://doi.org/10.1021/acsnano.5b07374 CrossRefGoogle Scholar
  29. 29.
    Y. Wang, X. Wang, Y. Ding, Z. Zhou, C. Hao, S. Zhou, Novel sodium lignosulphonate assisted synthesis of well dispersed Fe3O4 microspheres for efficient adsorption of copper (II). Powder Technol. 325, 597–605 (2018).  https://doi.org/10.1016/j.powtec.2017.11.055 CrossRefGoogle Scholar
  30. 30.
    J.H. Lee, Q. Lu, J.Y. Lee, H.J. Choi, Polymer-magnetic composite particles of Fe3O4/poly(o-anisidine) and their suspension characteristics under applied magnetic fields. Polymers 11(2), 219 (2019).  https://doi.org/10.3390/polym11020219 CrossRefGoogle Scholar
  31. 31.
    C. Jiang, X. Wang, D. Qin, W. Da, B. Hou, C. Hao, J. Wu, Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 369, 50–61 (2019).  https://doi.org/10.1016/j.jhazmat.2019.02.021 CrossRefGoogle Scholar
  32. 32.
    A. Morosan, D.E. Mihaiescu, D. Istrati, G. Voicu, A. Fudulu, R. Stan, Polar shell magnetic nanostructured systems for heterogeneous nanophase reactions. U.P.B. Sci. Bull. Ser. B 80, 53–64 (2018)Google Scholar
  33. 33.
    A.M. Grumezescu, R. Cristescu, M.C. Chifiriuc, G. Dorcioman, G. Socol, I.N. Mihailescu, D.E. Mihaiescu, A. Ficai, O.R. Vasile, M. Enculescu, D.B. Chrisey, Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication 7, 015014 (2015).  https://doi.org/10.1088/1758-5090/7/1/015014 CrossRefGoogle Scholar
  34. 34.
    C. Ravariu, A. Rusu, D. Dobrescu, F. Ravariu, L. Dobrescu, An analytical model for static characteristics of a pseudo-MOS transistor with neutral channel, in 23rd IEEE International Semiconductor Conference, Sinaia, Romania, 10–14 Oct 2000, pp. 307–310Google Scholar
  35. 35.
    C. Ravariu, Residual doping concentration estimation in a separation by IMplanted OXygen film using current measurements. IET Sci. Meas. Technol. 7, 1–6 (2013).  https://doi.org/10.1049/iet-smt.2012.0052 CrossRefGoogle Scholar
  36. 36.
    C. Ravariu, A. Rusu, F. Ravariu, D. Dobrescu, L. Dobrescu, Alternative methods of parameter extraction based on the pseudo-MOS technique, in Proceedings of the 24th IEEE International Conference on Microelectronics, Nis, Serbia, 16–19 May 2004. pp. 249–252.Google Scholar
  37. 37.
    V.K. Singh, B. Mazhari, Accurate characterization of organic thin film transistors in the presence of gate leakage current. AIP Adv. 1, 042123 (2011).  https://doi.org/10.1063/1.3657786 CrossRefGoogle Scholar
  38. 38.
    H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010).  https://doi.org/10.1039/B909902F CrossRefGoogle Scholar
  39. 39.
    M. Uno, N. Isahaya, B.-S. Cha, M. Omori, A. Yamamura, H. Matsui, M. Kudo, Y. Tanaka, Y. Kanaoka, M. Ito, J. Takeya, High-yield, highly uniform solution-processed organic transistors integrated into flexible organic circuits. Adv. Electron. Mater. 3, 1600410 (2017).  https://doi.org/10.1002/aelm.201600410 CrossRefGoogle Scholar
  40. 40.
    S.G. Kang, D.K. Schroder, SOI bulk and surface generation properties measured with the pseudo-MOSFET. IEEE Trans. Electron. Dev. 49, 1742–1747 (2002).  https://doi.org/10.1109/TED.2002.803639 CrossRefGoogle Scholar
  41. 41.
    W. Wang, J. Han, J. Ying, W. Xie, MoO3, modification layer to enhance performance of pentacene-OTFTs with various low-cost metals as source/drain electrodes. IEEE Trans. Electron. Dev. 61, 3507–3512 (2014).  https://doi.org/10.1109/TED.2014.2346894 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electronic Devices Circuits and ArchitecturesUniversity “Politehnica” BucharestBucharestRomania
  2. 2.Department of Organic Chemistry “Costin Nenitescu”, Faculty of Applied Chemistry and Materials ScienceUniversity “Politehnica” BucharestBucharestRomania
  3. 3.Lasers DepartmentNational Institute for Lasers, Plasma and Radiation PhysicsBucharest-MagureleRomania
  4. 4.Faculty of Applied Chemistry and Materials Science, National Research Center for Micro and NanomaterialsUniversity “Politehnica” BucharestBucharestRomania

Personalised recommendations