Sol–gel synthesis, structural, and dielectric properties of terbium-modified \(\hbox {BaTiO}_{3}\) ceramics

  • Mohamed AfqirEmail author
  • Mohamed Elaatmani
  • Abdelouahad Zegzouti
  • Abdelhamid Oufakir
  • Mohamed Daoud


Tb-doped \(\hbox {BaTiO} _{3}\) nanoparticles are prepared using the sol–gel method. The characterization was carried out using X-ray diffraction powder (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy spectroscopy (SEM). The FTIR analysis does not provide clear evidence on the effect of the doping amount. All diffraction peaks were perfectly matched with the pure phase of \(\hbox {BaTiO} _{3}\). The tetragonal distortion factor is smoothly dependent on the doping amount. The grains decrease in size when Tb concentration is increased. The diffusion coefficient and phase transitions do not change greatly when introducing Tb into the crystal. Fitting values of \(\gamma\) also support the evidence of normal ferro-paraelectric transition. Doped materials have a dielectric constant greater than undoped material, a meanwhile low loss is observed. The presence of Tb inhibits the formation of oxygen vacancies and promotes the stabilization of the oxygen-deficient system with the support of tetragonal phase formation during the sintering process.



  1. 1.
    Z. Nianshun, F. Huiqing, M. Jiangwei, R. Xiaohu, S. Yungui, Z. Yunyan, Ceram. Int. 44, 11331–11339 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Nianshun, F. Huiqing, R. Xiaohu, M. Jiangwei, B. Jie, G. Yijun, Z. Yunyan, J. Eur. Ceram. Soc. 39, 4096–4102 (2019)CrossRefGoogle Scholar
  3. 3.
    W. Jinbo, F. Huiqing, H. Bin, J. Hua, J. Mater. Sci. 30, 2479–2488 (2019)Google Scholar
  4. 4.
    D.Y. Lu, Y.Y. Peng, X.Y. Yu, X.Y. Sun, J. Alloys Compd. 681, 128 (2016)CrossRefGoogle Scholar
  5. 5.
    C.L. Freeman, J.A. Dawson, J.H. Harding, L.B. Ben, D.C. Sinclair, Adv. Funct. Mater. 23, 491 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Zmojda, M. Kochanowicz, P. Miluski, D. Dorosz, Fibers 2, 150 (2014)CrossRefGoogle Scholar
  7. 7.
    B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-santos, C. Jovalekic, V.V. Mitic, J.A. Varela, J. Eur. Ceram. Soc. 25, 1985 (2005)CrossRefGoogle Scholar
  8. 8.
    O. Grendal, A. Blichfeld, S. Skjærvø, W. van Beek, S. Selbach, T. Grande, M.-A. Einarsrud, Crystals 8, 253 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Chen, C. Deng, X. Peng, C. Fu, W. Cai, R. Gao, X. Deng, Ferroelectrics 507, 127 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Huiqing, L. Laijun, J. Electroceram. 22, 291–296 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Olszewski, L. Twerd, J.K. Kowalczyk, Sci. China 59, 634602 (2016)Google Scholar
  12. 12.
    P. Nayak, T. Badapanda, S. Panigrahi, J. Mater. Sci. 28, 625 (2017)Google Scholar
  13. 13.
    R. Li, Q. Zhen, M. Drache, A. Rubbens, C. Estournes, R.-N. Vannier, Solid State Ionics 198, 6 (2011)CrossRefGoogle Scholar
  14. 14.
    W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, Ceram. Int. 39, 7127 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Wang, Y. Fan, X. Zhao, A. Du, R. Ma, X. Cao, J. Alloys Compd. 737, 213 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Xufeng, D. Shihua, S. Tianxiu, L. Xu, P. Xiaosong, Y. Lihua, Ferroelectrics 488, 10 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Ianculescu, L. Mitoseriu, J. Am. Ceram. Soc. 95, 3912 (2012)CrossRefGoogle Scholar
  18. 18.
    X.-H. Wang, R.-Z. Chen, Z.-L. Gui, L.-T. Li, Mater. Sci. Eng. B 99, 199 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Singh, K.C. Singh, Ferroelectrics 518, 1–10 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Rehman, L. Wang, H.-B. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.-B. Li, J. Am. Ceram. Soc. 100, 602 (2017)CrossRefGoogle Scholar
  21. 21.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, 2005)Google Scholar
  22. 22.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  23. 23.
    A. Miguel, G.J. Marty, M. Liliana, Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, 2 Volumes. (Wiley, 2016)Google Scholar
  24. 24.
    Y. Daichi, H. Takuya, T. Hiroaki, S. Yukio, T. Takaaki, Key Eng. Mater. 582, 44–47 (2014)Google Scholar
  25. 25.
    T.L. Cottrell, The Strengths of Chemical Bonds, 2nd edn. (Butterworth, London, 1958)Google Scholar
  26. 26.
    H. Donnerberg, A. Birkholz, J. Phys. Condens. Matter 12, 8239 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Chemical DepartmentCadi Ayyad UniversityMarrakechMorocco
  2. 2.Laboratoire des Sciences des Matériaux Inorganiques et leurs Applications, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations