Advertisement

Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake

  • Qi Fan
  • Ligang Zhang
  • Honglong XingEmail author
  • Huan Wang
  • Xiaoli Ji
Article

Abstract

A novel Al@reduced graphene oxide (Al@RGO) composite was designed and synthesized by a one-step hydrothermal method. We investigated the effect of the graphene on the microwave absorbing properties and infrared emissivity of composites. The crystal structure, microscopic morphology, infrared emissivity and electromagnetic parameters of the prepared samples were characterized by XRD, FESEM, TEM, XPS, dual band infrared emissometer and vector network analyzer. TEM and SEM show that the thin Al sheet is uniformly wrapped by RGO with a crumpled surface. Functionalized RGO and surface cation-modified Al sheets are tightly compounded through an electrostatic interaction. The oxygen content and defect from RGO as polarization center endows the material with enhanced molecular polarization and dipole polarization effect. The Al sheet is well coated with RGO, enhancing interface polarization and impedance matching. The minimum reflection loss (RL) of optimized Al@RGO composites is − 46.11 dB at 13.68 GHz under the coating thickness of only 2 mm. The bandwidth below − 10 dB can reach 4.88 GHz (11.52–16.4 GHz). Al sheet is a suitable base material for both microwave absorption and infrared stealth. The Al@RGO composites exhibit excellent infrared stealth ability, and their lowest infrared emissivity is 0.62. Thus, Al@RGO composites show potential application for both electromagnetic wave absorption and infrared stealth.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51477002 and 51707003), and the National College Students Innovation and Entrepreneurship Training Program of China (Grant No. 201810361075).

References

  1. 1.
    H.J. Wu, D. Lan, B. Li, L.M. Zhang, Y. Fu, Y. Zhang, H. Xing, High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos. Part B—Eng. 179, 107524 (2019).  https://doi.org/10.1016/j.compositesb.2019.107524 CrossRefGoogle Scholar
  2. 2.
    A.P. Alegaonkar, P.S. Alegaonkar, Nano-carbon/polymer composites for electromagnetic shielding, structural mechanical and field emission applications. Thermoset Compos.: Prep. Prop. Appl. 38, 128 (2018).  https://doi.org/10.21741/9781945291876 CrossRefGoogle Scholar
  3. 3.
    A.P. Alegaonkar, P.S. Alegaonkar, Nanocarbons: Preparation, Assessments, and Applications in Structural Engineering, Spintronics, Gas Sensing, EMI Shielding, and Cloaking in X-band. Nanocarbon and Its Composites. Woodhead Publishing, Cambride, 2019, 171–285.  https://doi.org/10.1016/B978-0-08-102509-3.00007-9 CrossRefGoogle Scholar
  4. 4.
    H.S. Liang, J.L. Liu, Y. Zhang, L. Luo, H.J. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. Part B—Eng. 179, 107507 (2019).  https://doi.org/10.1016/j.compositesb.2019.107507 CrossRefGoogle Scholar
  5. 5.
    S. Acharya, C.S. Gopinath, P. Alegaonkar et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)–strontium hexaferrite (SF)/poly (vinylidene) fluoride (PVDF). Diam. Relat. Mater. 89, 28–34 (2018).  https://doi.org/10.1016/j.diamond.2018.07.024 CrossRefGoogle Scholar
  6. 6.
    R.W. Shu, H.L. Xing, X.L. Ji, D.X. Tan, Y. Gan, Preparation, microwave absorption and infrared emissivity of Ni-doped ZnO/Al powders by coprecipitation method in the GHz range. Nano 11, 1650047 (2016).  https://doi.org/10.1142/S1793292016500478 CrossRefGoogle Scholar
  7. 7.
    S. Acharya, J. Ray, T.U. Patro et al., Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology 29, 115605 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Acharya, P. Alegaonkar, S. Datar, Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem. Eng. J. 374, 144–154 (2019).  https://doi.org/10.1016/j.cej.2019.05.078 CrossRefGoogle Scholar
  9. 9.
    Z.Y. Shen, H.L. Xing, H. Wang, H.X. Jia, Y. Liu, A.J. Chen, P.Y. Yang, Synthesis and enhanced electromagnetic absorption properties of co-doped CeO2/RGO nanocomposites. J. Alloys Compd. 753, 28–34 (2018).  https://doi.org/10.1016/j.jallcom.2018.04.195 CrossRefGoogle Scholar
  10. 10.
    Y.L. Zhang, X.X. Wang, M.S. Cao, N.A.N.O. Res, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 3, 1426–1436 (2018).  https://doi.org/10.1007/s12274-017-1758-1 CrossRefGoogle Scholar
  11. 11.
    Y.P. Wang, Z. Peng, W. Jiang, Controlled synthesis of Fe3O4@SnO2/RGO nanocomposite for microwave absorption enhancement. Ceram. Int. 42, 10682–10689 (2016).  https://doi.org/10.1016/j.ceramint.2016.03.180 CrossRefGoogle Scholar
  12. 12.
    L. Yuan, X.L. Weng, W.F. Du, J.L. Xie, L.J. Deng, Optical and magnetic properties of Al/Fe3O4 core–shell low infrared emissivity pigments. J. Alloys Compd. 583, 492–497 (2014).  https://doi.org/10.1016/j.jallcom.2013.08.133 CrossRefGoogle Scholar
  13. 13.
    L. Yuan, J. Hu, X.L. Weng, Q.Y. Zhang, L.J. deng, Galvanic displacement synthesis of Al/Ni core–shell pigments and their low infrared emissivity application. J. Alloys Compd. 670, 275–280 (2016).  https://doi.org/10.1016/j.jallcom.2016.02.028 CrossRefGoogle Scholar
  14. 14.
    M.Y. Shi, C. Xu, Z.H. Yang, J. Liang, L. Wang, S.J. Tan, G.Y. Xu, Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating. J. Alloys Compd. 764, 314–322 (2018).  https://doi.org/10.1016/j.jallcom.2018.06.093 CrossRefGoogle Scholar
  15. 15.
    Y.F. Liu, J.L. Xie, M. Luo, B. Peng, L.J. Deng, Synthesis and characterization of magnetic Al/NiO composite pigments with low infrared emissivity. Mater. Sci. Forum. 898, 1561–1568 (2017).  https://doi.org/10.4028/www.scientific.net/MSF.898.1561 CrossRefGoogle Scholar
  16. 16.
    K.Z. Wang, C.X. Wang, Y.J. Yin, K.L. Chen, Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating. J. Alloys Compd. 690, 741–748 (2017).  https://doi.org/10.1016/j.jallcom.2016.08.171 CrossRefGoogle Scholar
  17. 17.
    X.X. Yan, G.Y. Xu, Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity. J. Alloys Compd. 491, 649–653 (2010).  https://doi.org/10.1016/j.jallcom.2009.11.030 CrossRefGoogle Scholar
  18. 18.
    X.G. Huang, W.F. Rao, Y.Y. Chen, W.H. Ding, H.L. Zhu, M.X. YU, J. Chen, Q.T. Zhang, Infrared emitting properties and environmental stability performance of aluminum/polymer composite coating. J. Mater. Sci.: Mater. Electron. 27, 5543–5548 (2016).  https://doi.org/10.1007/s10854-016-4458-9 CrossRefGoogle Scholar
  19. 19.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Aleany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).  https://doi.org/10.1021/nn1006368 CrossRefGoogle Scholar
  20. 20.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000).  https://doi.org/10.1016/S0169-4332(99)00601-7 CrossRefGoogle Scholar
  21. 21.
    M. Fathy, A. Gomaa, F.A. Taher, M.M. EI-Fass, A.E.-H.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51, 5664–5675 (2016).  https://doi.org/10.1007/s10853-016-9869-8 CrossRefGoogle Scholar
  22. 22.
    M.K. Han, X.W. Yin, L. Kong, M. LI, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014).  https://doi.org/10.1039/c4ta03033h CrossRefGoogle Scholar
  23. 23.
    M.Y. Yang, L. Wang, M. Li, T.J. Hou, Y.Y. Li, Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Adv. 5, 067136 (2015).  https://doi.org/10.1063/1.4922841 CrossRefGoogle Scholar
  24. 24.
    Y. Ping, J.M. Yan, Z.L. Wang, H.L. Wang, Q. Jiang, Ag0.1-Pd0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. J. Mater. Chem. A. 1, 12188–12191 (2013).  https://doi.org/10.1039/C3TA12724A CrossRefGoogle Scholar
  25. 25.
    J.Y. Cai, W.J. Liu, Z.H. Li, One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Appl. Surf. Sci. 358, 146–151 (2015).  https://doi.org/10.1016/j.apsusc.2015.08.021 CrossRefGoogle Scholar
  26. 26.
    K.L. Zhang, Y.H. Xu, Y. Lu, Y.C. Zhu, Y.Y. Qian, D.F. Wang, J.B. Zhou, N. Lin, Y.T. Qian, A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. J. Mater. Chem. A. 4, 6404–6410 (2016).  https://doi.org/10.1039/C6TA01118G CrossRefGoogle Scholar
  27. 27.
    Y.F. Pan, G.S. Wang, Y.H. Yue, Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content. RSC Adv. 5, 71718–71723 (2015).  https://doi.org/10.1039/C5RA13315G CrossRefGoogle Scholar
  28. 28.
    M. Laroussl, J.R. Roth, Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab. IEEE Trans. Plasma Sci. 21, 366–372 (1993).  https://doi.org/10.1109/27.234562 CrossRefGoogle Scholar
  29. 29.
    B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.Q. Chen, R. Zhang, Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 5, 9806–9814 (2015).  https://doi.org/10.1039/c4ra15411h CrossRefGoogle Scholar
  30. 30.
    D.Z. Chen, G.S. Wang, S. He, J. Liu, L. Guo, M.S. Cao, Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A. 1, 5996–6003 (2013).  https://doi.org/10.1039/C3TA10664K CrossRefGoogle Scholar
  31. 31.
    H.G. Wang, F.B. Meng, F. Huang, C.F. Jing, Y. Li, W. Wei, Z.W. Zhou, Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019).  https://doi.org/10.1021/acsami.9b01122 CrossRefGoogle Scholar
  32. 32.
    Y. Qin, Y. Zhang, N. Qi, Q.Z. Wang, X.J. Zhang, Y. Li, Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11, 10409–10417 (2019).  https://doi.org/10.1021/acsami.8b22382 CrossRefGoogle Scholar
  33. 33.
    H.S. Liang, J.L. Liu, Y. Zhang, L. Luo, H.J. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. Part B: Eng. 178, 107507 (2019).  https://doi.org/10.1016/j.compositesb.2019.107507 CrossRefGoogle Scholar
  34. 34.
    T. Bruce, P.J. Draine, Flatau, The discrete dipole approximation for periodic targets I. Theory and tests. J. Opt. Soc. Am. A 25, 2693–2703 (2008).  https://doi.org/10.1364/JOSAA.25.002693 CrossRefGoogle Scholar
  35. 35.
    L.L. Xiong, M. Yu, J.H. Liu, S.M. Li, B. Xue, Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles. RSC Adv. 7, 14733–14741 (2017).  https://doi.org/10.1039/C6RA27435H CrossRefGoogle Scholar
  36. 36.
    L. Liu, N. He, T. Wu, P.B. Hu, G.X. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019).  https://doi.org/10.1016/j.cej.2018.08.131 CrossRefGoogle Scholar
  37. 37.
    D. Lan, M. Qin, J.L. Liu, G.L. Wu, Y. Zhang, H.J. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020).  https://doi.org/10.1016/j.cej.2019.122797 CrossRefGoogle Scholar
  38. 38.
    P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, S.A. Maksimenko, A. Celzard, V. Fierro, G. Amaral-Labat, A. Pizzi, G. Valušis, J. Macutkevic, M. Ivanov, J. Banys, S. Bistarelli, A. Cataldo, M. Mastrucci, F. Micciulla, I. Sacco, E. Stefanutti, S. Bellucci, Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. J Nanophotonics 6, 061715 (2012).  https://doi.org/10.1117/1.JNP.6.061715 CrossRefGoogle Scholar
  39. 39.
    P.H. Fang, Cole–cole diagram and the distribution of relaxation times. J. Chem. Phys. 42, 3411–3413 (1965).  https://doi.org/10.1063/1.1695743 CrossRefGoogle Scholar
  40. 40.
    M. Qin, D. Lan, J.L. Liu, H.S. Liang, L.M. Zhang, H. Xing, T.T. Xu, H.J. Wu, Synthesis of single-component metal oxides with controllable multi‐shelled structure and their morphology‐related applications. Chem. Rec. (2019).  https://doi.org/10.1002/tcr.201900017 CrossRefGoogle Scholar
  41. 41.
    B. Zhao, G. Shao, B.B. Fan, Y.J. Xie, R. Zhang, Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195–200 (2014).  https://doi.org/10.1016/j.jmmm.2014.08.018 CrossRefGoogle Scholar
  42. 42.
    Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, Q.R. Yao, P.H. Lin, Magnetic and microwave absorption properties of La-Nd-Fe alloys. J. Magn. Magn. Mater. 423, 197–202 (2017).  https://doi.org/10.1016/j.jmmm.2016.08.093 CrossRefGoogle Scholar
  43. 43.
    J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He, W. Xia, J.P. He, Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018).  https://doi.org/10.1016/j.apsusc.2018.06.263 CrossRefGoogle Scholar
  44. 44.
    H.X. Jia, H.L. Xing, X.L. Ji, S.T. Gao, Synergistic effect of hexagonal flake Co3O4@PANI core–shell composites with excellent microwave-absorbing properties. J. Mater. Sci.: Mater. Electron. 30, 3386–3395 (2019).  https://doi.org/10.1007/s10854-018-00612-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China

Personalised recommendations