Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT–KNNG composite thin films

  • Srinivas Pattipaka
  • J. Pundareekam Goud
  • Gyan Prakash Bharti
  • K. C. James Raju
  • Alika Khare
  • D. PamuEmail author


Composite thin films of 1–x [Bi0.5Na0.5TiO3] – x [K0.5Na0.5NbO3 + 1 wt% Gd2O3] (BNT–KNNG); (x = 0.01) have been deposited at various O2 pressures from 0.1 to 10 Pa by pulsed laser deposition, and their crystal structure, surface morphology, optical, dielectric, and ferroelectric properties were investigated. X-ray diffraction analysis of thin films deposited at 0.1 Pa revealed a single phase of BNT–KNNG and further (> 0.1 Pa), film crystallinity gradually increased with a rise in O2 pressure. The improvement in the refractive index and a reduction in optical bandgap are observed with O2 pressure and are estimated to be 2.28–2.42 and 4.08–3.65 eV, respectively. The third-order nonlinear optical coefficients estimated using the Z-scan technique are found to be enhanced with O2 pressure. The film deposited at 10 Pa exhibited a higher nonlinear refractive index (n2 = 6.188 × 10− 6 cm2/W) and a strong absorption coefficient (β = 1.043 cm/W). The temperature-dependent dielectric response displayed two structural phase transitions from rhombohedral to tetragonal phase at 165 oC and tetragonal to cubic phase at 298 oC. The enhanced dielectric (εr = 411, tanδ = 0.156 @ 1 kHz), Microwave dielectric (εr = 317 and tanδ = 0.0074 @ 10 GHz), and ferroelectric (Pr = 25.31 µC/cm2, EC = 42.62 kV/cm @ 1 kHz) properties with low leakage current are observed for the film deposited at 10 Pa which followed a space charge limited conduction behavior. The obtained microwave and nonlinear optical properties of BNT–KNNG composite films are suitable for tunable microwave and optical photonic device applications.


Pulsed laser deposition Microwave dielectric properties Ferroelectric properties Linear and nonlinear optical properties 



The work was financially supported by DAE BRNS [37(1)/14/33/2015/BRNS], India. The authors are grateful to Central Instruments Facility (CIF) and Centre for Nanotechnology, Indian Institute of Technology Guwahati, India for providing experimental facilities.


  1. 1.
    P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, MRS Bull. 34, 658 (2009)CrossRefGoogle Scholar
  2. 2.
    M.-A. Dubois, P. Muralt, Appl. Phys. Lett. 74, 3032 (1999)CrossRefGoogle Scholar
  3. 3.
    F. Levassort, P. Tran-Huu-Hue, E. Ringaard, M. Lethiecq, J. Eur. Ceram. Soc. 21, 1361 (2001)CrossRefGoogle Scholar
  4. 4.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 51606 (2006)CrossRefGoogle Scholar
  5. 5.
    N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sens. Actuators, A  105, 162 (2003)  Google Scholar
  6. 6.
    N. Ma, B.-P. Zhang, W.-G. Yang, D. Guo, J. Eur. Ceram. Soc. 32, 1059 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Sandeep, J.Pundareekam Goud, K.C. James Raju, Appl. Phys. Lett. 111, 12901 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Dong, D.S. Stone, R.S. Lakes, J. Appl. Phys. 111, 84107 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Mahesh, S. Thota, D. Pamu, IEEE Trans. Dielectr. Electr. Insul. 22, 3668 (2015)CrossRefGoogle Scholar
  10. 10.
    G.A. Smolenskii, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  11. 11.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Pattipaka, A.R. James, P. Dobbidi, J. Electron. Mater. 47, 3876 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Pattipaka, A.R. James, P. Dobbidi, J. Alloys Compd. 765, 1195 (2018)CrossRefGoogle Scholar
  14. 14.
    D.H.A. Blank, M. Dekkers, G. Rijnders, J. Phys. D Appl. Phys. 47, 34006 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Zhang, C. Jia, Y. Bai, W. Zhang, in Adv. Mater. Res. (Trans Tech Publications Ltd, 2013), pp. 340–348Google Scholar
  16. 16.
    W. Leng, C. Yang, H. Ji, J. Zhang, J. Tang, H. Chen, L. Gao, J. Phys. D Appl. Phys. 40, 1206 (2007)CrossRefGoogle Scholar
  17. 17.
    T. Ning, C. Chen, C. Wang, Y. Zhou, D. Zhang, H. Ming, G. Yang, J. Appl. Phys. 109, 13101 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Chen, B. Yang, M. Zhang, F. Wang, K. Cheah, W. Cao, Thin Solid Films 518, 5585 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, K.L. Yao, Z.L. Liu, G.Y. Gao, Z.Y. Sun, S.W. Fan, Phys. Chem. Chem. Phys. 12, 9197 (2010)CrossRefGoogle Scholar
  20. 20.
    Y.H. Wang, B. Gu, G.D. Xu, Y.Y. Zhu, Appl. Phys. Lett. 84, 1686 (2004)CrossRefGoogle Scholar
  21. 21.
    A.S. Daryapurkar, J.T. Kolte, P. Gopalan, Thin Solid Films 579, 44 (2015)CrossRefGoogle Scholar
  22. 22.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  23. 23.
    Z.G. Zhang, F. Zhou, X.Q. Wei, M. Liu, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang, B.Y. Man, Phys. E Low-Dimensional Syst. Nanostructures 39, 253 (2007)CrossRefGoogle Scholar
  24. 24.
    Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang, W.H. Han, S.Z. Cao, L.C. Zhao, Surf. Coatings Technol. 201, 5344 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Yang, L. Xue, Thin Solid Films 494, 28 (2006)CrossRefGoogle Scholar
  26. 26.
    S.J. Wang, L. Lu, M.O. Lai, J.Y.H. Fuh, J. Appl. Phys. 105, 84102 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Pundareekam Goud, S. Ramakanth, A. Joseph, K. Sandeep, G. Lakshminarayana Rao, and K. C. James Raju, Thin Solid Films 626, 126 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Swanepoel, J. Phys. E. 16, 1214 (1983)CrossRefGoogle Scholar
  29. 29.
    D. Dorranian, L. Dejam, G. Mosayebian, J. Theor. Appl. Phys. 6, 13 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Tauc, Opt. Prop. Solids 1972, 277 (1972)Google Scholar
  31. 31.
    T.K. Oanh Vu, D.U. Lee, E.K. Kim, J. Alloys Compd. 806, 874 (2019)CrossRefGoogle Scholar
  32. 32.
    S. Pattipaka, A. Joseph, G.P. Bharti, K.C.J. Raju, A. Khare, D. Pamu, Appl. Surf. Sci. 488, 391 (2019)CrossRefGoogle Scholar
  33. 33.
    G.P. Bharti, A. Khare, Opt. Mater. Express 6, 2063 (2016)CrossRefGoogle Scholar
  34. 34.
    E.W. Van Stryland, M. Sheik-Bahae, A.A. Said, D.J. Hagan, Prog. Cryst. Growth Charact. Mater. 27, 279 (1993)CrossRefGoogle Scholar
  35. 35.
    M. Peddigari, S. Pattipaka, G.P. Bharti, A. Khare, P. Dobbidi, Opt. Mater. (Amst). 58, 9 (2016)CrossRefGoogle Scholar
  36. 36.
    G.P. Bharti, P.P. Dey, A. Khare, Mater. Chem. Phys. 216, 206 (2018)CrossRefGoogle Scholar
  37. 37.
    P. Yang, L. Zhang, Y. Zhao, J. Gong, Y. Tang, Int. J. Appl. Ceram. Technol. 12, 399 (2015)CrossRefGoogle Scholar
  38. 38.
    W. Robert, Boyd, Nonlinear optics, 2nd edn. (Elsevier, Academic Press, 2011), pp. 238Google Scholar
  39. 39.
    J. Krupka, J. Eur. Ceram. Soc. 23, 2607 (2003)CrossRefGoogle Scholar
  40. 40.
    J. Krupka, A.P. Gregory, O.C. Rochard, R.N. Clarke, B. Riddle, J. Baker-Jarvis, J. Eur. Ceram. Soc. 21, 2673 (2001)CrossRefGoogle Scholar
  41. 41.
    M. Peddigari, V. Patel, G.P. Bharti, A. Khare, D. Pamu, J. Am. Ceram. Soc. 100, 3013 (2017)CrossRefGoogle Scholar
  42. 42.
    K.V. Saravanan, K. Sudheendran, M.G. Krishna, K.C.J. Raju, Ferroelectrics 356, 158 (2007)CrossRefGoogle Scholar
  43. 43.
    F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, K.J. Hemker, J. Appl. Phys. 89, 1336 (2001)CrossRefGoogle Scholar
  44. 44.
    Y.Y. Ma, R.H. Bube, J. Electrochem. Soc. 124, 1430 (1977)CrossRefGoogle Scholar
  45. 45.
    S.H. Hu, G.J. Hu, X.J. Meng, G.S. Wang, J.L. Sun, S.L. Guo, J.H. Chu, N. Dai, J. Cryst. Growth 260, 109 (2004)CrossRefGoogle Scholar
  46. 46.
    W. Cai, C. Fu, J. Gao, H. Chen, J. Alloys Compd. 480, 870 (2009)CrossRefGoogle Scholar
  47. 47.
    H. Orihara, S. Hashimoto, Y. Ishibashi, J. Phys. Soc. Japan 63, 1031 (1994)CrossRefGoogle Scholar
  48. 48.
    K.-S. Yang, M.-J. Choi, J.-S. Choi, J.-H. Eom, B.-J. Park, S.-Y. Lee, S.-G. Yoon, Sensors Actuators A Phys. 243, 117 (2016)CrossRefGoogle Scholar
  49. 49.
    H. Borkar, V. Rao, M. Tomar, V. Gupta, J.F. Scott, A. Kumar, RSC Adv. 7, 12842 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations