Advertisement

Glycine-A bio-capping agent for the bioinspired synthesis of nano-zinc oxide photocatalyst

  • Parita Basnet
  • Dhrubajyoti Samanta
  • T. Inakhunbi Chanu
  • Satadru Jha
  • Somenath ChatterjeeEmail author
Article
  • 23 Downloads

Abstract

Structural modification of nanoparticles (NPs) for application-specific study is timely. In the present investigation, an attempt has been made for the bioinspired synthesis of zinc oxide (ZnO) NPs possessing different morphologies using glycine as the bio-capping agent. A variation in the amount of glycine during low-temperature mediated solid-phase synthesis indicated that a higher ratio of glycine directed the ensemble of nanohexagons into nanobundles which further formed nano-flower buds- like morphology, while least concentration formed agglomerated NPs and moderate concentration of glycine was able to modify the NPs’ structure into nanorods. On the other hand, the utilization of solution-phase synthesis methods, i.e. co-precipitation and hydrothermal, led to the formation of thinner and thicker ZnO nanosheets, respectively. In terms of crystalline structure, not much difference was observed in the lattice parameters or the unit cell of the crystal, with approximately similar crystallite sizes. From Fourier transform infrared spectroscopy, the functionalization of glycine from both the amine and the carboxyl group was noted. Further, it was found that the morphology and photoluminescence emission spectra of the samples were inter-related, wherein higher the agglomeration of the particles, greater the intensity of the visible region defect band was observed. The as-synthesized ZnO-photocatalysts were then employed for the degradation of rhodamine B (RhB), a major effluent of the textile industry. The photocatalytic activity of the samples was found to depend upon the surface area, which in turn was related to the morphology and the magnitude of green emission defect states. About 99% RhB degradation was obtained with ZnO possessing nano-flower buds-like morphology within 60 min of sunlight irradiation. Additionally, the role of reactive oxidative species and the stability of this photocatalyst were investigated.

Notes

Acknowledgements

Ms. Parita Basnet is obliged for scholarship from Pai Endowment fund, Ref SMU/VC/2015-70, dated on 17/11/2016. Authors are thankful to Dr. S. N. Chakraborty and Dr. S. Tamang, Department of Chemistry, Sikkim University, for their help in XRD characterization. Authors express their gratitude towards Sophisticated Test & Instrumentation Centre, Kochi, India, for HRTEM analysis and also thankful to Dr. S. Chandrasekhar, Director, IICT, Hyderabad, India, for helping the Authors to record FESEM and Dr. Rajendra Srivastava, IIT-Ropar, India, for his help in surface area analysis.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr. Appl. Phys. 10, 676–681 (2010).  https://doi.org/10.1016/j.cap.2009.08.015 CrossRefGoogle Scholar
  2. 2.
    S.S. Ashtaputre, A. Deshpande, S. Marathe, M.E. Wankhede, J. Chimanpure, R. Pasricha, J. Urban, S.K. Haram, S.W. Gosavi, S.K. Kulkarni, Synthesis and analysis of ZnO and CdSe nanoparticles. Pramana J. Phys. 65, 615–620 (2005).  https://doi.org/10.1007/bf03010449 CrossRefGoogle Scholar
  3. 3.
    L. Wu, Y. Zhang, G. Yang, S. Zhang, L. Yu, P. Zhang, Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 6, 69836–69844 (2016).  https://doi.org/10.1039/c6ra10042b CrossRefGoogle Scholar
  4. 4.
    M.A. Morris, L. Chen, J.D. Holmes, S. Ramrez-Garca, Facile synthesis of monodisperse ZnO nanocrystals by direct liquid phase precipitation. J. Nanomater. (2011).  https://doi.org/10.1155/2011/853832 CrossRefGoogle Scholar
  5. 5.
    P.D. Cozzoli, A. Kornowski, H. Weller, Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction–oxidation reaction. J. Phys. Chem. B. 109, 2638–2644 (2005).  https://doi.org/10.1021/jp0457139 CrossRefGoogle Scholar
  6. 6.
    A.K. Singh, V. Viswanath, V.C. Janu, Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 129, 874–878 (2009).  https://doi.org/10.1016/j.jlumin.2009.03.027 CrossRefGoogle Scholar
  7. 7.
    P. Basnet, D. Samanta, T. Inakhunbi Chanu, J. Mukherjee, S. Chatterjee, Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles. SN Appl. Sci. 1, 633 (2019).  https://doi.org/10.1007/s42452-019-0642-x CrossRefGoogle Scholar
  8. 8.
    P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, J. Mukherjee, Removal of cationic water pollutants using PEG stabilized ZnO nanoparticles under solar irradiation. in Proceedings of the Dae Solid State Physics Symposium 2018 (2019), p. 030204.  https://doi.org/10.1063/1.5113043
  9. 9.
    X. Sun, X. Chen, Z. Deng, Y. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78, 99–104 (2003).  https://doi.org/10.1016/S0254-0584(02)00310-3 CrossRefGoogle Scholar
  10. 10.
    H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B. 108, 3955–3958 (2004).  https://doi.org/10.1021/jp036826f CrossRefGoogle Scholar
  11. 11.
    T.T. Trinh, K.-Q. Tran, X.-Q. Zhang, R.A. van Santen, E.J. Meijer, The role of a structure directing agent tetramethylammonium template in the initial steps of silicate oligomerization in aqueous solution. Phys. Chem. Chem. Phys. 17, 21810–21818 (2015).  https://doi.org/10.1039/C5CP02068A CrossRefGoogle Scholar
  12. 12.
    J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Synthesis of uniform hexagonal prismatic ZnO whiskers. Chem. Mater. 14, 1216–1219 (2002).  https://doi.org/10.1021/cm0107326 CrossRefGoogle Scholar
  13. 13.
    P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Tea-phytochemicals functionalized Ag modified ZnO nanocomposites for visible light driven photocatalytic removal of organic water pollutants. Mater. Res. Express. 6, 085095 (2019).  https://doi.org/10.1088/2053-1591/ab234e CrossRefGoogle Scholar
  14. 14.
    J. Zhou, N.S. Xu, Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18, 2432–2435 (2006).  https://doi.org/10.1002/adma.200600200 CrossRefGoogle Scholar
  15. 15.
    Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des. 8, 3010–3018 (2008).  https://doi.org/10.1021/cg800126r CrossRefGoogle Scholar
  16. 16.
    P. Basnet, T. Inakhunbi Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B Biol. 183, 201–221 (2018).  https://doi.org/10.1016/j.jphotobiol.2018.04.036 CrossRefGoogle Scholar
  17. 17.
    H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43, 907–914 (2017).  https://doi.org/10.1016/j.ceramint.2016.10.051 CrossRefGoogle Scholar
  18. 18.
    J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. (2018).  https://doi.org/10.1155/2018/1062562 CrossRefGoogle Scholar
  19. 19.
    V.G. Sreevalsa, P.P. Jeeju, M.S. Augustine, K.M. Anilkumar, S. Jayalekshmi, l-Histidine-modified biocompatible zinc oxide nanocrystals. J. Exp. Nanosci. 8, 937–946 (2013).  https://doi.org/10.1080/17458080.2011.624553 CrossRefGoogle Scholar
  20. 20.
    M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B Biointerfaces 117, 233–239 (2014).  https://doi.org/10.1016/j.colsurfb.2014.02.017 CrossRefGoogle Scholar
  21. 21.
    B. Liu, H.C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir. 20, 4196–4204 (2004).  https://doi.org/10.1021/la035264o CrossRefGoogle Scholar
  22. 22.
    C. Lao, Y. Li, C.P. Wong, Z.L. Wang, Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 1323–1328 (2007).  https://doi.org/10.1021/nl070359m CrossRefGoogle Scholar
  23. 23.
    M. Stiboller, G. Raber, K.A. Francesconi, Simultaneous determination of glycine betaine and arsenobetaine in biological samples by HPLC/ICPMS/ESMS and the application to some marine and freshwater fish samples. Microchem. J. 122, 172–175 (2015). doi: https://doi.org/10.1016/j.microc.2015.04.022 CrossRefGoogle Scholar
  24. 24.
    R.Y. Gundersen, P. Vaagenes, T. Breivik, F. Fonnum, P.K. Opstad, Glycine—an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol. Scand. 49, 1108–1116 (2005).  https://doi.org/10.1111/j.1399-6576.2005.00786.x CrossRefGoogle Scholar
  25. 25.
    E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B. 102, 5566–5572 (1998).  https://doi.org/10.1021/jp980730h CrossRefGoogle Scholar
  26. 26.
    E. Darvishi, D. Kahrizi, E. Arkan, Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J. Mol. Liq. 286, 110831 (2019).  https://doi.org/10.1016/j.molliq.2019.04.108 CrossRefGoogle Scholar
  27. 27.
    M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).  https://doi.org/10.1126/sciadv.1500323 CrossRefGoogle Scholar
  28. 28.
    M.A. Hanjra, M.E. Qureshi, Global water crisis and future food security in an era of climate change. Food Policy 35, 365–377 (2010). doi: https://doi.org/10.1016/j.foodpol.2010.05.006 CrossRefGoogle Scholar
  29. 29.
    S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043–1067 (2017). doi: https://doi.org/10.1007/s13201-016-0455-7 CrossRefGoogle Scholar
  30. 30.
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014).  https://doi.org/10.1039/C4RA06658H CrossRefGoogle Scholar
  31. 31.
    E.A. Clarke, R. Anliker, Organic dyes and pigments. Handb. Environ. Chem. (1980).  https://doi.org/10.1007/978-3-540-38522-6-7 CrossRefGoogle Scholar
  32. 32.
    D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review (Springer, Berlin, Heidelberg, 2019).  https://doi.org/10.1007/s13762-018-2130-z CrossRefGoogle Scholar
  33. 33.
    P.J. Price, W.A. Suk, A.E. Freeman, W.T. Lane, R.L. Peters, M.L. Vernon, R.J. Huebner, In vitro and in vivo indications of the carcinogenicity and toxicity of food dyes. Int. J. Cancer 21, 361–367 (1978).  https://doi.org/10.1002/ijc.2910210318 CrossRefGoogle Scholar
  34. 34.
    E.Y. Ozmen, S. Erdemir, M. Yilmaz, M. Bahadir, Removal of carcinogenic direct azo dyes from aqueous solutions using calix[n]arene derivatives. Clean Soil Air Water 35, 612–616 (2007).  https://doi.org/10.1002/clen.200700033 CrossRefGoogle Scholar
  35. 35.
    P. Ribao, J. Corredor, M.J. Rivero, I. Ortiz, Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard. Mater. (2019).  https://doi.org/10.1016/j.jhazmat.2018.05.026 CrossRefGoogle Scholar
  36. 36.
    Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).  https://doi.org/10.1021/acs.chemrev.7b00161 CrossRefGoogle Scholar
  37. 37.
    M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A.S. Hameedha Beevi, R. Jeeva, Priya, Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires. Adv. Nat. Sci. Nanosci. Nanotechnol. (2016).  https://doi.org/10.1088/2043-6262/7/4/045011 CrossRefGoogle Scholar
  38. 38.
    S. Campisi, M. Schiavoni, C. Chan-Thaw, A. Villa, Untangling the role of the capping agent in nanocatalysis: recent advances and perspectives. Catalysts. 6, 185 (2016).  https://doi.org/10.3390/catal6120185 CrossRefGoogle Scholar
  39. 39.
    M. Vosoughifar, Influence of capping agents additives on morphology of cadmium tungstate nanoparticles and study of their photocatalytic properties. J. Mater. Sci. Mater. Electron. 28, 6800–6805 (2017).  https://doi.org/10.1007/s10854-017-6377-9 CrossRefGoogle Scholar
  40. 40.
    E. Emil, G. Alkan, S. Gurmen, R. Rudolf, D. Jenko, B. Friedrich, Tuning the morphology of ZnO nanostructures with the ultrasonic spray pyrolysis process. Metals (Basel) (2018).  https://doi.org/10.3390/met8080569 CrossRefGoogle Scholar
  41. 41.
    C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 5, 105003–105037 (2015).  https://doi.org/10.1039/c5ra19388e CrossRefGoogle Scholar
  42. 42.
    D.H. Li, S.F. He, J. Chen, C.Y. Jiang, C. Yang, Solid-state chemical reaction synthesis and characterization of lanthanum tartrate nanocrystallites under ultrasonication spectra. IOP Conf. Ser. Mater. Sci. Eng. (2017).  https://doi.org/10.1088/1757-899X/242/1/012023 CrossRefGoogle Scholar
  43. 43.
    Y. Li, Y. Cao, D. Jia, A general strategy for synthesis of metal nanoparticles by a solid-state redox route under ambient conditions. J. Mater. Chem. A. 2, 3761–3765 (2014).  https://doi.org/10.1039/c3ta14427e CrossRefGoogle Scholar
  44. 44.
    H. Yang, J. Yang, Photocatalytic degradation of rhodamine B catalyzed by TiO2 films on a capillary column. RSC Adv. 8, 11921–11929 (2018).  https://doi.org/10.1039/c8ra00471d CrossRefGoogle Scholar
  45. 45.
    U. Holzwarth, N. Gibson, The Scherrer equation versus the “Debye–Scherrer equation. Nat. Nanotechnol. 6, 534 (2011).  https://doi.org/10.1038/nnano.2011.145 CrossRefGoogle Scholar
  46. 46.
    R.F. de Farias, Synthesis and characterization of manganese-glycine and copper-glycine adducts. Quim. Nova 25, 729–730 (2002).  https://doi.org/10.1590/S0100-40422002000500004 CrossRefGoogle Scholar
  47. 47.
    I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.05.011 CrossRefGoogle Scholar
  48. 48.
    G. Guisbiers, S. Mejía-Rosales, F. Leonard, Deepak, Nanomaterial properties: size and shape dependencies. J. Nanomater. (2012).  https://doi.org/10.1155/2012/180976 CrossRefGoogle Scholar
  49. 49.
    E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016).  https://doi.org/10.1007/s12034-016-1315-7 CrossRefGoogle Scholar
  50. 50.
    M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013).  https://doi.org/10.1016/j.matlet.2013.08.069 CrossRefGoogle Scholar
  51. 51.
    P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide. Opt. i Spektrosk. (Opt. Spectrosc.) 111, 776–785 (2011).  https://doi.org/10.1134/S0030400X11120216 CrossRefGoogle Scholar
  52. 52.
    A. Khorsand Zak, R. Razali, W.H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 6, 1399–1403 (2011).  https://doi.org/10.2147/IJN.S19693 CrossRefGoogle Scholar
  53. 53.
    T. Academy, R. Academy, S.S. Trakt, 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析. 3, 1–21 (1968)Google Scholar
  54. 54.
    V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447–5451 (1998).  https://doi.org/10.1063/1.367375 CrossRefGoogle Scholar
  55. 55.
    J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012).  https://doi.org/10.1021/am300835p CrossRefGoogle Scholar
  56. 56.
    D. Pradhan, S.K. Mohapatra, S. Tymen, M. Misra, K.T. Leung, Morphology-controlled ZnO nanomaterials for enhanced photoelectrochemical performance. Mater. Express 1, 59–67 (2011).  https://doi.org/10.1166/mex.2011.1008 CrossRefGoogle Scholar
  57. 57.
    C. Chen, X. Li, W. Ma, J. Zhao, N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 106, 318–324 (2002).  https://doi.org/10.1021/jp0119025 CrossRefGoogle Scholar
  58. 58.
    P. Rauwel, M. Salumaa, A. Aasna, A. Galeckas, E. Rauwel, A review of the synthesis and photoluminescence properties of hybrid ZnO and carbon nanomaterials. J. Nanomater. (2016).  https://doi.org/10.1155/2016/5320625 CrossRefGoogle Scholar
  59. 59.
    M. Catauro, E. Tranquillo, G. Dal Poggetto, M. Pasquali, A. Dell’Era, S.V. Ciprioti, Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol–gel method. Materials (Basel) (2018).  https://doi.org/10.3390/ma11122364 CrossRefGoogle Scholar
  60. 60.
    S. Abdul Rashid, S.H. Othman, T.I. Mohd Ghazi, N. Abdullah, Effect of postdeposition heat treatment on the crystallinity, size, and photocatalytic activity of TiO2 nanoparticles produced via chemical vapour deposition. J. Nanomater (2010).  https://doi.org/10.1155/2010/512785 CrossRefGoogle Scholar
  61. 61.
    K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal? RSC Adv. 5, 23540–23547 (2015).  https://doi.org/10.1039/c5ra00355e CrossRefGoogle Scholar
  62. 62.
    S. Steplin Paul Selvin, A. Ganesh Kumar, L. Sarala, R. Rajaram, A. Sathiyan, J. Princy Merlin, I. Sharmila Lydia, Photocatalytic degradation of rhodamine B using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model. ACS Sustain. Chem. Eng. 6, 258–267 (2018).  https://doi.org/10.1021/acssuschemeng.7b02335 CrossRefGoogle Scholar
  63. 63.
    X. Xing, T. Chen, Y. Li, D. Deng, X. Xiao, Y. Wang, Flash synthesis of Al-doping macro-/nanoporous ZnO from self-sustained decomposition of Zn-based complex for superior gas-sensing application to n-butanol. Sens. Actuators B Chem. 237, 90–98 (2016).  https://doi.org/10.1016/j.snb.2016.06.087 CrossRefGoogle Scholar
  64. 64.
    H. Wu, M. Qin, A. Chu, Z. Cao, P. Chen, Y. Liu, X. Qu, Effect of urea on the synthesis of Al-doped ZnO nanoparticle and its adsorptive properties for organic pollutants. Mater. Res. Bull. 75, 78–82 (2016).  https://doi.org/10.1016/j.materresbull.2015.11.016 CrossRefGoogle Scholar
  65. 65.
    C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011).  https://doi.org/10.1016/j.solidstatesciences.2011.02.016 CrossRefGoogle Scholar
  66. 66.
    H. Kim, H. Jeong, T.K. An, C.E. Park, K. Yong, Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting. ACS Appl. Mater. Interfaces 5, 268–275 (2013).  https://doi.org/10.1021/am301960h CrossRefGoogle Scholar
  67. 67.
    M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. J. Mater. Chem. A. 2, 7517–7525 (2014).  https://doi.org/10.1039/c3ta15446g CrossRefGoogle Scholar
  68. 68.
    G.S. Gardner, Handbook of chemistry. J. Franklin Inst. 229, 138–139 (1940).  https://doi.org/10.1016/S0016-0032(40)90947-4 CrossRefGoogle Scholar
  69. 69.
    Y. Sun, L. Wang, X. Yu, K. Chen, Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14, 3199–3204 (2012).  https://doi.org/10.1039/c2ce06335b CrossRefGoogle Scholar
  70. 70.
    S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Omrani, Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram. Int. 42, 10259–10265 (2016).  https://doi.org/10.1016/j.ceramint.2016.03.153 CrossRefGoogle Scholar
  71. 71.
    S. Kuriakose, N. Bhardwaj, J. Singh, B. Satpati, S. Mohapatra, Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein J. Nanotechnol. 4, 763–770 (2013).  https://doi.org/10.3762/bjnano.4.87 CrossRefGoogle Scholar
  72. 72.
    E.R. Nestmann, G.R. Douglas, T.I. Matula, C.E. Grant, D.J. Kowbel, Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Res. 39, 4412–4417 (1979)Google Scholar
  73. 73.
    J.W. Cornick, R.V. Chudyk, L.A. Mcdermott, Toxicity of rhodamine B and fluorescein sodium to fish and their compatibility with antimycin A. J. Progress. Fish-Culturist 0779, 37–41 (2011).  https://doi.org/10.1577/1548-8640(1969)31[139:TORBAF]2.0.CO;2.CrossRefGoogle Scholar
  74. 74.
    P. National Toxicology, NTP toxicology and carcinogenesis studies of rhodamine 6G (C.I. Basic Red 1) (CAS No. 989-38-8) in F344/N rats and B6C3F1 mice (feed studies). Natl. Toxicol. Progr. Tech. Rep. Ser. 364, 1–192 (1989). http://www.ncbi.nlm.nih.gov/pubmed/12692640.Google Scholar
  75. 75.
    G. Mishra, M. Mukhopadhyay, TiO2 decorated functionalized halloysite nanotubes (TiO2 @HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci. Rep. 9, 1–17 (2019).  https://doi.org/10.1038/s41598-019-40775-4 CrossRefGoogle Scholar
  76. 76.
    D. Samanta, T.I. Chanu, S. Chatterjee, Citrus limetta juice as capping agent in hydrothermal synthesis of ZnS nanosphere for photocatalytic activity. Mater. Res. Bull. 88, 85–90 (2017).  https://doi.org/10.1016/j.materresbull.2016.11.019 CrossRefGoogle Scholar
  77. 77.
    T.I. Chanu, D. Samanta, A. Tiwari, S. Chatterjee, Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route. Appl. Surf. Sci. 391, 548–556 (2016).  https://doi.org/10.1016/j.apsusc.2016.05.045 CrossRefGoogle Scholar
  78. 78.
    D. Samanta, T.I. Chanu, P. Basnet, S. Chatterjee, Organic dye degradation under solar irradiation by hydrothermally synthesized ZnS nanospheres. J. Mater. Eng. Perform. 27, 2673–2678 (2018).  https://doi.org/10.1007/s11665-018-3214-0 CrossRefGoogle Scholar
  79. 79.
    S. Leonardi, Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 5, 17 (2017).  https://doi.org/10.3390/chemosensors5020017 CrossRefGoogle Scholar
  80. 80.
    S. Meena, D. Vaya, B.K. Das, Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial. Bull. Mater. Sci. 39, 1735–1743 (2016).  https://doi.org/10.1007/s12034-016-1318-4 CrossRefGoogle Scholar
  81. 81.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes. Nanoscale Res. Lett. 12, 4–13 (2017).  https://doi.org/10.1186/s11671-017-1904-4 CrossRefGoogle Scholar
  82. 82.
    K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, P. Graidist, Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4(X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 177, 304–312 (2017).  https://doi.org/10.1016/j.seppur.2016.12.040 CrossRefGoogle Scholar
  83. 83.
    S. Bhatia, N. Verma, Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater. Res. Bull. 95, 468–476 (2017).  https://doi.org/10.1016/j.materresbull.2017.08.019 CrossRefGoogle Scholar
  84. 84.
    G. Nagaraju, G.C. Shivaraju, G. Banuprakash, D. Rangappa, Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater. Today Proc. 4, 11700–11705 (2017).  https://doi.org/10.1016/j.matpr.2017.09.085 CrossRefGoogle Scholar
  85. 85.
    M.S. Azmina, R. Md Nor, H.A. Rafaie, N.S.A. Razak, S.F.A. Sani, Z. Osman, Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Appl. Nanosci. 7, 885–892 (2017).  https://doi.org/10.1007/s13204-017-0626-3 CrossRefGoogle Scholar
  86. 86.
    U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018).  https://doi.org/10.1039/c8ra01638k CrossRefGoogle Scholar
  87. 87.
    D. Neena, K.K. Kondamareddy, H. Bin, D. Lu, P. Kumar, Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe–Cd co-modified ZnO. Sci. Rep. (2018).  https://doi.org/10.1038/s41598-018-29025-1 CrossRefGoogle Scholar
  88. 88.
    R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, B. Shahmoradi, H. Daraei, A. Jafari, K. Yetilmezsoy, S.H. Puttaiah, Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. J. Environ. Heal. Sci. Eng. 17, 479–492 (2019).  https://doi.org/10.1007/s40201-019-00366-x CrossRefGoogle Scholar
  89. 89.
    S.B. Satpal, A.A. Athawale, Synthesis of ZnO and Nd doped ZnO polyscales for removal of rhodamine 6G dye under UV light irradiation. Mater. Res. Express 5, 085501 (2018).  https://doi.org/10.1088/2053-1591/aad26c CrossRefGoogle Scholar
  90. 90.
    R. Nagaraja, N. Kottam, C.R. Girija, B.M. Nagabhushana, Photocatalytic degradation of Rhodamine B dye under UV / solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 215–216, 91–97 (2012).  https://doi.org/10.1016/j.powtec.2011.09.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityGangtokIndia
  2. 2.Department of ChemistryNar Bahadur Bhandari Degree CollegeGangtokIndia
  3. 3.Department of Chemistry, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityGangtokIndia

Personalised recommendations