Advertisement

High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor

  • 32 Accesses

Abstract

This study aims the amperometric enzyme-free glucose sensing of interlayered Polyaniline nanosheets @reduced grapheme oxide (PANINS@rGO). Conductive PANINS were synthesized using in situ chemical oxidative polymerization method. The PANINS@rGO nanocomposite was prepared by the solution mixing method and as-synthesized material was fully examined using various spectroscopy and microscopy techniques. PANINS@rGO composite coated on screen-printed carbon electrode (SPCE) was studied for electrochemical behaviour for the detection of non-enzymatic glucose. The fabricated sensor matrix was tested towards detection of glucose efficacy using cyclic voltammetry (CV) and Chronoamperometry (CA) techniques in the presence of 0.1 M NaOH electrolyte in a range of 1–10 mM at an optimum working potential of 60 mV s−1. PANINS@rGO/SPCE absorbed with high sensitivity (3448.27 μA mM−1 cm−2) and excellent low detection limit (LOD) 30 nM, (S/N = 3). Furthermore, the obtained results of the proposed PANINS@rGO/SPCE fabricated a finite sensor for non-enzymatic glucose sensor. Thus this report proves the practical opportunities for the development of environmentally benign, cost effective and chemically stable electrode materials for sensors, which may be beneficial for the expansion of economically viable enzyme free electrochemical glucose sensor devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y.J. Zhai, J.H. Li, X.Y. Chu, M.Z. Xu, F.J. Jin, X. Li, X. Fang, Z.P. Wei, X.H. Wang, MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.130

  2. 2.

    A.D. Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014)

  3. 3.

    D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/j.aca.2018.05.051

  4. 4.

    S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors. Talanta 140, 30–42 (2016). https://doi.org/10.1016/j.talanta.2015.11.033

  5. 5.

    L. Liu, W. Qi, X. Gao, C. Wang, G. Wang, Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzymefree glucose detection. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.02.19

  6. 6.

    R. Rebelo, A.I. Barbosa, D. Caballero, I.K. Kwon, J.M. Oliveira, S.C. Kundu, R.L. Reis, V.M. Correlo, 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens. Bioelectron. 130, 20–39 (2019). https://doi.org/10.1016/j.bios.2018.12.057

  7. 7.

    M.S. Steiner, A. Duerkop, O.S. Wolfbeis, Optical methods for sensing glucose. Chem. Soc. Rev. 40, 4805–4839 (2011)

  8. 8.

    P.W. Barone, R.S. Parker, M.S. Strano, In Vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562 (2005)

  9. 9.

    J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, G. Liang, A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens. Bioelectron. 49, 512–518 (2013)

  10. 10.

    J. Tian, S. Liu, Y. Luo, X. Sun, Fe(III)-based coordination polymer nanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catal. Sci. Technol. 2, 432–436 (2012)

  11. 11.

    G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013)

  12. 12.

    D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive Glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546 (2013)

  13. 13.

    X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase-graphene Chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901–905 (2009)

  14. 14.

    S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Self-assembled graphene platelet Glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 26, 4491–4496 (2011). https://doi.org/10.1007/s00604-012-0923-1

  15. 15.

    W.-C. Lee, K.-B. Kim, N.G. Gurudatt, K.K. Hussain, C.S. Choi, D.-S. Park, Y.-B. Shim, Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with a conductive polymer. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.01.028

  16. 16.

    N. Karikalan, M. Velmurugan, S.M. Chen, C. Karuppiah, Modern approach to the synthesis of Ni (OH) 2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl. Mater. Interfaces 8, 22545–22553 (2016)

  17. 17.

    S. Radhakrishnan, J. Mathiyarasu, Graphene–carbon nanotubes modified electrochemical sensors, in Graphene-based electrochemical sensors for biomolecules, ed. by A. Pandikumar, P. Rameshkumar (Elsevier, Amsterdam, 2019), pp. 187–205

  18. 18.

    A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, Development of an impedimetric non-enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. J. Alloys Compd. 786, 960–968 (2019). https://doi.org/10.1016/j.jallcom.2019.02.060

  19. 19.

    L. Sinha, S. Pakhira, P. Bhojane, S. Mali, C.K. Hong, P.M. Shirage, Hybridization of Co3O4 and α-MnO2 nanostructures for high-performance nonenzymatic glucose sensing. ACS Sustain. Chem. Eng. 6(10), 13248–13261 (2018). https://doi.org/10.1021/acssuschemeng.8b02835

  20. 20.

    Y. Xie, Y. Song, Y. Zhang, L. Xu, L. Miao, C. Peng, L. Wang, Cu metalorganic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J. Alloys Compd. 235, 97–102 (2018). https://doi.org/10.1016/j.jallcom.2018.05.064

  21. 21.

    H. Dai, P. Cao, D. Chen, Y. Li, N. Wang, H. Ma, M. Lin, Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth. Met. 235, 97–102 (2018). https://doi.org/10.1016/j.synthmet.2017.12.004

  22. 22.

    S. Komathi, A.I. Gopalan, N. Muthuchamy, K.P. Lee, Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Adv. 7(25), 15342–15351 (2017). https://doi.org/10.1039/c6ra24760a

  23. 23.

    K. Justice Babu, S. Sheet, Y.S. Lee, G. Gnana Kumar, Three-dimensional dendrite Cu−Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b03314

  24. 24.

    G.G. Wallace, P.R. Teasdale, G.M. Spinks, L.A. Kane-Maguire, Conductive electroactive polymers: intelligent materials systems (CRC Press, Boca Raton, 2002)

  25. 25.

    R. Arukula, M. Vinothkannan, A.R. Kim, D.J. Yoo, Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: an efficient anode catalyst for direct methanol fuel cells. J. Alloys Compd. 771, 477–488 (2019). https://doi.org/10.1016/j.jallcom.2018.08.303

  26. 26.

    M. Jaymand, Recent progress in chemical modification of polyaniline. Progr. Polym. Sci. 38(9), 1287–1306 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.015

  27. 27.

    C. Xiong, T. Li, Y. Zhu, T. Zhao, A. Dang, H. Li, X. Ji, Y. Shang, M. Khan, Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. J. Alloys Compd. 695, 1248–1259 (2017). https://doi.org/10.1016/j.jallcom.2016.10.253

  28. 28.

    H. Wang, L. Ma, M. Gan, T. Zhou, "Design and fabrication of macroporous polyaniline nanorods@ graphene-like MoS2 nanocomposite with the high electrochemical performance for supercapacitors. J. Alloys Compd. 699, 176–182 (2017). https://doi.org/10.1016/j.jallcom.2016.12.344

  29. 29.

    J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in a supercapacitor. J. Alloys Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008

  30. 30.

    Z. Zhou, S. Gu, Y. Zhang, F. Wu, N. Zhou, Lithium storage performance improvement of NaTi2 (PO4) 3 with nitrogen-doped carbon derived from Polyaniline,". J. Alloys Compd. 767, 745–752 (2018)

  31. 31.

    N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, Y. Luo, In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 392, 71–79 (2017). https://doi.org/10.1016/j.apsusc.2016.07.168

  32. 32.

    M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015). https://doi.org/10.1039/c5ra01794g

  33. 33.

    A. Bhattacharya, A. De, Conducting polymers in solution—progress toward processibility. J. Macromol. Sci. C 39, 17–56 (1999). https://doi.org/10.1081/MC-100101416

  34. 34.

    K. Krukiewicz, A. Katunin, The effect of the reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid. A Synth. Met. 214, 45–49 (2016). https://doi.org/10.1016/j.synthmet.2016.01.017

  35. 35.

    K. Tzou, R.V. Gregory, A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth. Met. 53(3), 365–377 (1993). https://doi.org/10.1016/0379-6779(93)91106-C

  36. 36.

    A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as a non-enzymatic glucose sensor. Sens. Actuators B 266, 294–301 (2018)

  37. 37.

    Q. Xu, S.-X. Gu, L. Jin, Y.-E. Zhou, Z. Yang, W. Wang, X. Hu, Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens. Actuators B 190, 562–569 (2014). https://doi.org/10.1016/j.snb.2013.09.049

  38. 38.

    S. Bilal, W. Ullah, Polyaniline@ CuNi nanocomposite: a highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 284, 382–391 (2018). https://doi.org/10.1016/j.electacta.2018.07.165

  39. 39.

    Y. Kong, Y. Sha, Y. Tao, Y. Qin, H. Xue, M. Lu, Non-enzymatic glucose sensor based on nickel hexacyanoferrate/polyaniline hybrids on graphene prepared by a one-step process. J. Electrochem. Soc. 161(12), B269–B274 (2014). https://doi.org/10.1149/2.0961412jes

  40. 40.

    Y. Wang, J. Zhong, F. Ding, Q. Zhao, Z. Zhang, X. Liu, Y. Liu, H. Rao, P. Zou, X. Wang, A bifunctional NiCo2S4/reduced graphene oxide@ polyaniline nanocomposite as a highly-efficient electrode for glucose and rutin detection. New J. Chem. 42(12), 9398–9409 (2018). https://doi.org/10.1039/C8NJ00663F

  41. 41.

    K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Anal. Biochem. 518, 143–153 (2017). https://doi.org/10.1016/j.ab.2016.11.020

  42. 42.

    M. Xu, Y. Song, Y. Ye, C. Gong, Y. Shen, L. Wang, L. Wang, A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sens. Actuators B 252, 1187–1193 (2017). https://doi.org/10.1016/j.snb.2017.07.147

  43. 43.

    S. Kailasa, B. Geeta, N. Jayrambabu, R. Kiran Kumar Reddy, S. Sharma, K. Venkateswara Rao, Conductive polyaniline nanosheets (CPANINS) for a non-enzymatic glucose sensor. Mater. Lett. 245, 118–121 (2019). https://doi.org/10.1016/j.matlet.2019.02.103

  44. 44.

    H. Wu, J. Fan, E. Liu, X. Hu, Y. Ma, X. Fan, Y. Li, C. Tang, Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with enhanced photocatalytic activity. J. Alloys Compd. 623, 298–303 (2015). https://doi.org/10.1016/j.jallcom.2014.10.153

  45. 45.

    M. Ghorbani, H. Abdizadeh, M.R. Golobostanfard, Reduction of graphene oxide via modified hummers method. Procedia Mater. Sci. 11, 326–330 (2015). https://doi.org/10.1016/j.mspro.2015.11.104

  46. 46.

    W. Zheng, L. Hu, L.Y. Lee, K.Y. Wong, Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J. Electroanal. Chem. 781, 155–160 (2016). https://doi.org/10.1016/j.jelechem.2016.08.004

  47. 47.

    A. Viswanathan, A.N. Shetty, Single-step synthesis of rGO, copper oxide and polyaniline nanocomposites for high energy supercapacitors. Electrochim. Acta 289, 204–217 (2018). https://doi.org/10.1016/j.electacta.2018.09.033

  48. 48.

    Y. Wang, Z. Hua, L. Jia, H. Li, T. Li, C. Kai, Y. Gu, Optimizing the polymerization conditions of soluble polyaniline doped with itaconic acid. J. Macromol. Sci. A 51(7), 577–581 (2014). https://doi.org/10.1080/10601325.2014.916179

  49. 49.

    S. Kailasa et al., Twisted polyaniline nanobelts@ rGO for room temperature NO2 sensing. Mater. Lett. 257, 126687 (2019)

  50. 50.

    H. Zeghioud, S. Lamouri, Z. Safidine, M. Belbachir, Chemical synthesis and characterization of highly soluble conducting polyaniline in mixtures of common solvents. J. Serb. Chem. Soc. 80(7), 917–931 (2015). https://doi.org/10.2298/JSC140719003Z

  51. 51.

    A. Chiolerio, S. Bocchini, F. Scaravaggi, S. Porro, D. Perrone, D. Beretta, C.F. Pirri, Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping. Semicond. Sci. Technol. 30(10), 104001 (2015). https://doi.org/10.1088/0268-1242/30/10/104001

Download references

Acknowledgements

This work was supported by Centre for Nanoscience and Technology, Institute of Science Technology, JNTU Hyderabad.

Funding

The authors did not receive any research fund or grant from any organization.

Author information

Correspondence to K. Venkateswara Rao.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kailasa, S., Reddy, R.K.K., Reddy, M.S.B. et al. High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-019-02837-1

Download citation