Advertisement

Electrodeposition and texture control of Ag-doped SnS thin films with high-electrical transmission properties

  • Sibo Hu
  • Ying Liu
  • Jingjun Liu
  • Zhengping Zhang
  • Jing Ji
  • Zhilin LiEmail author
  • Feng WangEmail author
Article

Abstract

SnS is widely noticed in optoelectronics and thermoelectric fields. But the low-electrical transmission performance confines its actual application. In this paper, Ag-doped SnS thin films were successfully prepared by a sample electrodeposition method. The mechanism of the S and Sn co-deposition and the effect of complexing agent K4P2O7 were studied. The Ag content was successfully controlled by the adjustment of the electrolyte and deposition parameters. The b-axis texture was strengthened by Cetyl trimethyl ammonium bromide (CTAB) in the electrolyte. The carrier concentration was promoted by the control of Ag content and the carrier mobility was promoted by the strengthening of the b-axis texture. The electrical conductivity was promoted by the combination of the Ag concentration control and b-axis texture control. It reached the highest known value of 1.40 S cm−1 under the highest b-axis texture coefficient. Such a sample combination method and control strategies provide a new view for the preparation of semiconductors with high-electrical transmission properties.

Notes

Acknowledgement

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51472020).

References

  1. 1.
    F. Jiang, H. Shen, W. Wang, L. Zhang, J. Electrochem. Soc. 159, 235 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Xu, Y. Yang, Z. Xie, J. Mater. Sci: Mater Electron. 25, 3028 (2014)Google Scholar
  3. 3.
    M. Kul, J. Vacuum 107, 213 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Seal, N. Singh, E.W. McFarland, J. Baltrusaitis, J. Phys. Chem. C 119, 6471 (2015)CrossRefGoogle Scholar
  5. 5.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)CrossRefGoogle Scholar
  6. 6.
    L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141 (2016)CrossRefGoogle Scholar
  7. 7.
    B.Z. Sun, Z.J. Ma, C. He, K.C. Wu, RSC. Adv. 5, 56382 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Gedi, V.R.M. Reddy, T.R.R. Kotte, S.H. Kim, C.W. Jeon, Ceram. Int. 42, 19027 (2016)CrossRefGoogle Scholar
  9. 9.
    V. Steinmann, R.E. Brandt, R. Chakraborty, R. Jaramillo, M. Young, B.K. Ofori-Okai, C. Yang, A. Polizzotti, K.A. Nelson, R.G. Grodon, T. Buonassisi, APL. Mater. 4, 026103 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Kafashan, R.E. Kahrizsangi, F.J. Sheini, R. Yousefi, Phys. Status Solidi A 213, 1302 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Hao, V.P. Dravid, M.G. Kanatzidis, C. Wolverton, APL Mater. 4, 104505 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, K. Cao, J. Liu, Z. Zhang, J. Ji, F. Wang, Z. Li, J. Mater. Sci: Mater. Electron. 30, 15880 (2019)Google Scholar
  13. 13.
    M.A. Almessiere, A.L. Al-Otaibi, I.B. Assaker, T. Ghrib, R. Chtourou, Mater. Sci. Semicond. Process. 40, 267 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Lett. 13, 1341 (2013)CrossRefGoogle Scholar
  15. 15.
    S.M. Herron, J.T. Tanskanen, K.E. Roelofs, S.F. Bent, Chem. Mater. 26, 7106 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Yeh, K. Cheng, J. Power Sources 275, 750 (2015)CrossRefGoogle Scholar
  17. 17.
    Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, M.G. Kanatzidis, J. Mater. Chem. A. 2, 17302 (2014)CrossRefGoogle Scholar
  18. 18.
    K.S. Kumar, A.G. Manohari, S. Dhanapandian, T. Mahalingam, Mater. Lett. 131, 167 (2014)CrossRefGoogle Scholar
  19. 19.
    H.J. Jia, S.Y. Cheng, X.K. Wu, Y.L. Yang, Nat. Sci. 2, 197 (2010)Google Scholar
  20. 20.
    C. An, K. Tang, Y. Jin, Q. Liu, X. Chen, Y. Qian, J. Cryst. Growth 252, 581 (2003)CrossRefGoogle Scholar
  21. 21.
    A. Tang, J. Liu, M. Dou, Z. Li, F. Wang, Appl. Surf. Sci. 383, 253 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Fang, Plating Compound: Theory and Application, 1st edn. (Chemical Industry Press Co. Ltd., Beijing, 2008), pp. 347–349 (in Chinese)Google Scholar
  23. 23.
    A. Adam, S. Verma, G. Seth, Eur. J. Chem. 8, 404 (2011)Google Scholar
  24. 24.
    X. Xu, F. Wang, J. Liu, J. Ji, Electrochim. Acta 55, 4428 (2010)CrossRefGoogle Scholar
  25. 25.
    B.H. Baby, D.B. Mohan, Sol. Energy. 174, 373 (2018)CrossRefGoogle Scholar
  26. 26.
    B.H. Baby, D.B. Mohan, Sol. Energy. 189, 207 (2019)CrossRefGoogle Scholar
  27. 27.
    B.H. Baby, D.B. Mohan, Sol. Energy. 193, 61 (2019)CrossRefGoogle Scholar
  28. 28.
    Z. Li, Material Physics, 2nd ed. (Chemical Industry Press Co. Ltd, 2015), pp. 154 (in Chinese)Google Scholar
  29. 29.
    M. Devika, N.K. Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T R. Reddy, J. Electrochem. Soc. 153, 727 (2006)CrossRefGoogle Scholar
  30. 30.
    P. Lu, H. Jia, S. Cheng, Adv. Mater. Res. 60, 11 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Jia, S. Cheng, P. Lu, Adv. Mater. Res. 152, 752 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations