Advertisement

Influence of the annealing temperature on the formation of Mo17O47 and MoO3 nanoparticles and their Photocatalytic performances for the degradation of MB dye

  • 25 Accesses

Abstract

The present research article is about the visible light photocatalytic degradation of Methylene Blue (MB) by aqueous heterogeneous medium containing orthorhombic phase of nanocrystalline (NCs) molybdenum oxide (MoO3). The two different oxidation forms of molybdenum oxides formed at annealing temperatures of 90 °C and 400 °C are Mo17O47 and α-MoO3 nanocrystals which are found to exhibit good photocatalytic activity. In the present work, a simple conventional wet chemical method has been used to synthesize molybdenum oxide nanoparticles (NPs) by combining ammonium heptamolybdate tetrahydrate (AHMT) with capped sodium dodecyl sulfate (SDS) and ethanol solution. The orthorhombic phase is present in the samples annealed at 90 °C, 200 °C, 300 °C, and 400 °C, respectively, and it is found that the orthorhombic phase is a highly stable phase in both Mo17O47 and α-MoO3. The photocatalytic activity of the synthesized samples is estimated by using MB degradation. The photocatalytic behaviors of the synthesized Mo17O47 and α-MoO3 nanostructures have been studied using the color degradation of MB. It is found that Mo17O47 and α-MoO3 with nanorods like structure has the potential to degrade the MB dye and for a time of 90 min, the degradation efficiency of Mo17O47 and MoO3 are 56.15% and 95.78%, respectively.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    L. Cheng, M. Shao, X. Wang, H. Hu, Chem.: Eur. J. 15, 2310 (2009)

  2. 2.

    N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, J. Mater. Chem. 19, 2526 (2009)

  3. 3.

    X. Cheng, Y. Li, L. Sang, J. Ma, H. Shi, X. Liu, J. Lu, Y. Zhang, Electrochim. Acta 269, 241 (2018)

  4. 4.

    M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, J. Mater. Sci.: Mater. Electron. 27, 11646 (2016)

  5. 5.

    C. Yong Hua, M. Dong-Ge, S. Heng Da, C. Jiang Shan, G. Qing Xun, W. Qiang, Z. Yong Biao, Light: Sci. Appl. 5, 16042 (2016)

  6. 6.

    J. Bahk, H. Fang, K. Yazawaa, A. Shakouria, J. Mater. Chem. C 3, 10362 (2015)

  7. 7.

    A. Hasani, Q. Van Le, T. Nguyen, K. Choi, W. Sohn, J. Kim, H. Won Jang, S. Young Kim, Sci Rep. 7, 13258 (2017)

  8. 8.

    A. Chithambararaj, A. Chandra Bose, Beilstein J. Nanotechnol. 2, 585 (2011)

  9. 9.

    X.W. Lou, C. Zeng, Chem. Mater. 14, 4781 (2002)

  10. 10.

    N. Chithambararaj, S. Sanjini, A. Velmathi, A. Chandra Bose, Phys. Chem. Chem. Phys. 15, 14761 (2013)

  11. 11.

    C.H. Cao, L. Xiao, C.H. Chen, Q.H. Gao, Appl. Surf. Sci. 333, 110 (2015)

  12. 12.

    Y.P. Chem, C.L. Lu, L. Xu, Y. Ma, W.H. Hou, J.J. Zhu, CrystEngComm 12, 3740 (2010)

  13. 13.

    M. Shakir, D. Shahid, J. Kang, Chem. Commun. 46, 4324 (2010)

  14. 14.

    R. Ganguly, George. Bull. Mater. Sci. 30, 183 (2007)

  15. 15.

    S.R. Dhage, M.S. Hassan, O.B. Yang, Mater. Chem. Phys. 114, 511 (2009)

  16. 16.

    M. Sethu Raman, N. Senthil Kumar, J. Chandrasekaran, R. Priya, P. Baraneedharan, M. Chavali, Optik 157, 410 (2018)

  17. 17.

    R. Ganesh, V. Senthil Kumar, M. Raja, J. Optoelectron. Adv. Mater. 15(11), 1399 (2013)

  18. 18.

    M. Layegh, F.E. Ghodsi, H. Hadipour, J. Phys. Chem. Solids 121, 375 (2018)

  19. 19.

    P.S. Shewale, S.H. Lee, Y.S. Yu, J. Alloys Compds. 774, 461 (2019)

  20. 20.

    R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, RSC Adv. 6, 53967 (2016)

  21. 21.

    P. Wongkrua, T. Thongtem, S. Thongtem, J. Nanomater. (2013). https://doi.org/10.1155/2013/702679

  22. 22.

    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edn. (Wiley, New York, 1978)

  23. 23.

    T. Sicilano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Mater. Chem. Phys. 114, 687 (2009)

  24. 24.

    M. Rochkind, S. Pasternak, Y. Paz, Molecules 20, 88 (2015)

  25. 25.

    K.K. Paul, R. Ghosh, P.K. Giri, Nanotechnology 27, 315703 (2016)

  26. 26.

    K. Kaviyarasu, C. Maria Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. Subba Reddy, R. Naresh Kumar, S. Chandra Shekhar, F.T. Thema, D. Letsholathebe, M. Genene-Tessema, M. Maaza, J. Photochem. Photobiol. B Biol. 173, 466 (2017)

  27. 27.

    H. Hanmei, D. Chonghai, X. Junchan, G.M. Kehua Zhang, J. Exp. Nanosci. (2015). https://doi.org/10.1080/17458080.2015.1012654

  28. 28.

    N. Wolfgang, N.V. Shokhirev, S. Attila, Phys. Rev. Lett. 79, 3074 (1997)

  29. 29.

    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939 (2013)

  30. 30.

    H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, Chem. Eng. J. 229, 126 (2013)

Download references

Author information

Correspondence to N. Rajiv Chandar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajiv Chandar, N., Agilan, S., Thangarasu, R. et al. Influence of the annealing temperature on the formation of Mo17O47 and MoO3 nanoparticles and their Photocatalytic performances for the degradation of MB dye. J Mater Sci: Mater Electron (2020) doi:10.1007/s10854-019-02820-w

Download citation