Study on absorbing wave of Fe3O4/MWCNTs nanoparticles based on large-scale space

  • Xinhua Song
  • Xiaojie Li
  • Honghao YanEmail author


Research on electromagnetic stealth technology has always been one of the research hotspots. Combining the advantages of the coating absorbing model (millimeter thickness) and the structural absorbing model, the absorbing model of the nanoparticle distribution in the large-scale space (meter-scale thickness) is established. The smoke cloud clusters are applied by three different scales of 7 kg, 13 kg and 100 kg to produce space filled with Fe3O4/MWCNTs composite nanoparticles with dimensions of 3 m, 5 m and 11 m. The reflectivity R of the electromagnetic wave passing through the nano space is simulated by COMSOL software and compared with the reflectivity R′ calculated by the transmission line model. The results show that the reflectivity of the 3 m space generated by the 7 kg cloud explosion device is below − 10 dB in the 2–10 GHz frequency band, and the lowest value is − 73 dB. In the 5 m space produced by 13 kg cloud explosion device, the reflectivity value in the 2–6 GHz frequency band is below − 10 dB, and the lowest value is − 57 dB. The reflectivity of 11 m space produced by 100 kg cloud explosion device is between − 9.6 and 0 dB.



This project was financially supported by the National Natural Science Foundation of China (Nos. 11672068, and 11672067).


  1. 1.
    R. Yingzheng, Radar Cross Section and Stealth Technology (National Defense Industry Press, Beijing, 1998)Google Scholar
  2. 2.
    Y.Q. Li, H. Zhang, Y.Q. Fu et al., RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas Wirel. Propag. Lett. 7, 473–476 (2008)CrossRefGoogle Scholar
  3. 3.
    W. Emerson, Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag. 21(4), 484–490 (2003)CrossRefGoogle Scholar
  4. 4.
    T. Rui, L. Zhao-Hui, B. Guo-Dong et al., Research progress of novel carbon series absorbing coating materials. Surf. Technol. 32, 1–18 (2017)Google Scholar
  5. 5.
    F. Luo, W.C. Zhou, D.L. Zhao, The electric and absorbing wave properties of fibers in structural radar absorbing materials. J. Mater. Eng. 2, 37–40 (2000)Google Scholar
  6. 6.
    Y. Huang, J. Li, T. Ma, Y. Wang, C. Shi, Study on the structural microwave absorbing material made with carbon-felt. Acta Metall. Sin. 17(1), 28–31 (2000)Google Scholar
  7. 7.
    L. Liu, Y. Duan, L. Ma et al., Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl. Surf. Sci. 257(3), 842–846 (2010)CrossRefGoogle Scholar
  8. 8.
    M.S. Jang, V.W. Brar, M.C. Sherrott et al., Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90(16), 165409 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Bastiere, A Decision-Making Aid for Multi-layer Radar Absorbent Coverings. Nasa Sti/recon Technical Report N (1990), p. 90Google Scholar
  10. 10.
    K.D. Groot, R. Geesink, C.P.A.T. Klein et al., Plasma sprayed coatings of hydroxyl apatite. J. Biomed. Mater. Res. 21(12), 1375–1381 (1987)CrossRefGoogle Scholar
  11. 11.
    F. Ge, L. Chen, J. Zhu, Reflection characteristics of chiral microwave absorbing coatings. Int. J. Infrared Millim. Waves 17(1), 255–268 (1996)CrossRefGoogle Scholar
  12. 12.
    D. Setiadi, Z. He, J. Hajto et al., Application of a conductive polymer to self-absorbing ferroelectric polymer pyroelectric sensors. Infrared Phys. Technol. 40(4), 267–278 (1999)CrossRefGoogle Scholar
  13. 13.
    B. Shi, G.U. Wen-Hui, Z. Xiao-Guang, Infrared and radar composite stealth technology. Electro-Optic Technol. Appl. 24(4), 29–31 (2009)Google Scholar
  14. 14.
    Y. He, R. Gong, H. Cao et al., Preparation and microwave absorption properties of metal magnetic micropowder-coated honeycomb sandwich structures. Smart Mater. Struct. 16(5), 1501–1505 (2007)CrossRefGoogle Scholar
  15. 15.
    F. Sakran, Y. Neveoz, A. Ron et al., Absorbing frequency-selective-surface for the mm-wave range. IEEE Trans. Antennas Propag. 56(8), 2649–2655 (2008)CrossRefGoogle Scholar
  16. 16.
    D.A. Fulghum, Stealth engine advances revealed in JSF designs. Aviat. Week Space Technol. 154(12), 90–93 (2001)Google Scholar
  17. 17.
    D.Y. Kim, Y.C. Chung, Electromagnetic wave absorbing characteristics of Ni-Zn ferrite grid absorber. IEEE Trans. Electromagn. Compat. 39(4), 356–361 (1997)CrossRefGoogle Scholar
  18. 18.
    L.K. Neher, Nonreflecting background for testing microwave equipment. U.S. Patent 2656535, 20 Oct 1953Google Scholar
  19. 19.
    C.L. Holloway, R.R. Delyser, R.F. German et al., Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans. Electromagn. Compat. 39(1), 33–47 (1997)CrossRefGoogle Scholar
  20. 20.
    D.U. Shiming, Z. Kai, L. Xiangyin et al., Study on extinction mechanism and performance of infrared smoke screen. Electron. Opt. Control 18, 90–94 (2011)Google Scholar
  21. 21.
    L.T. Wang, N. Jiang, M.S. Lv, Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles, in AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology (International Society for Optics and Photonics, 2015)Google Scholar
  22. 22.
    L. Xin, W. Bi-Yi, Research on shielding effect of smoke screen material in terahertz spectrum. Electro-Optic Technol. Appl. 36, 235–254 (2015)Google Scholar
  23. 23.
    B.H. Hou, Y.Y. Wang, J.Z. Guo et al., A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@ FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10(4), 3581–3589 (2018)CrossRefGoogle Scholar
  24. 24.
    Z. Hou, P. Yan, B. Sun et al., An excellent soft magnetic Fe/Fe3O4-FeSiAl composite with high permeability and low core loss. Results Phys. 14, 102498 (2019)CrossRefGoogle Scholar
  25. 25.
    X. Zhou, C. Zhang, M. Zhang et al., Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Composites A 127, 105627 (2019)CrossRefGoogle Scholar
  26. 26.
    X. Chen, Z. Jia, A. Feng et al., Hierarchical Fe3O4@ carbon@ MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 553, 465–474 (2019)CrossRefGoogle Scholar
  27. 27.
    G. Wu, Z. Jia, X. Zhou et al., Interlayer controllable of hierarchical MWCNTs@C@ FexOy cross-linked composite with wideband electromagnetic absorption performance. Composites A 128, 105687 (2020)CrossRefGoogle Scholar
  28. 28.
    X. Song, X. Li, H. Yan, Study on microwave attenuation mechanism model of Fe3O4/MWCNTs nanocomposites. Mater. Res. Express 6, 125617 (2019)CrossRefGoogle Scholar
  29. 29.
    T. Hou, B. Wang, M. Ma et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Composites B 180, 107577 (2020)CrossRefGoogle Scholar
  30. 30.
    D. Lan, M. Qin, J. Liu et al., Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020)CrossRefGoogle Scholar
  31. 31.
    G. Wu, Y. Cheng, Z. Yang et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  33. 33.
    E. Zhang, Lu Tong, L. Tao et al., graphene doped carbon aerogel powder preparation and electromagnetic interference performance. Acta Sin. Sin. 40(3), 1233–1236 (2019)Google Scholar
  34. 34.
    B.D. Fishburn, Some aspects of blast from fuel-air explosives. Acta Astronaut. 3(11–12), 1049–1065 (1976)CrossRefGoogle Scholar
  35. 35.
    Q.Y. Hua, Z.T. Qing, S.Z. Wu, Experimental study on unconfined volume explosion effects of low-mass new fuel air explosives. Chin. J. Explos. Propellants 25(3), 7–8 (2002)Google Scholar
  36. 36.
    K. Mcnesby, B. Homan, J. Ritter et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010)Google Scholar
  37. 37.
    G. Liu, F. Hou, B. Cao et al., Experimental study of fuel-air explosive. Combust. Explos. Shock Waves 44(2), 213–217 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Chen, Numerical Simulation of Multiphase Fuel Dispersion and Transient Cloud Field (Beijing University of Technology, Chaoyang, 2015)Google Scholar
  39. 39.
    H. Yan, X. Song, X. Wang et al., Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem. Phys. Lett. 723, 51–56 (2019)CrossRefGoogle Scholar
  40. 40.
    X. Song, X. Li, H. Yan, Absorbance analysis of Fe3O4 particles of different scales in silicone rubber at Ku band. Results Phys. 15, 102541 (2019)CrossRefGoogle Scholar
  41. 41.
    COMSOL, Multiphysics Finite Element Method and Multiphysical Field Modeling and Analysis (People's Communications Press, Zhongfan Technology Company, Guangzhou, 2007).Google Scholar
  42. 42.
    Y. Honghao, X. Song, Y. Wang, Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Adv. 8, 065322 (2018)CrossRefGoogle Scholar
  43. 43.
    Wu Zhu, H. Dehai, X. Cailu, Carbon Nanotubes (China Machine Press, Beijing, 2005), p. 14Google Scholar
  44. 44.
    Y. Song, X. Honghao, M. Zhengzheng et al., Orthogonal analysis of electromagnetic wave reflection coefficient based on transmission line theory. Sci. Technol. Eng. 445(12), 142–146 (2018)Google Scholar
  45. 45.
    M. Cao, R. Qin, C. Qiu et al., Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Des. 24(5), 391–396 (2003)CrossRefGoogle Scholar
  46. 46.
    T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos et al., Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246(3), 360–365 (2002)CrossRefGoogle Scholar
  47. 47.
    X. Song, X. Li, H. Yan, Preparation and microwave absorption properties of Fe3O4/MWCNTs/NBR composites. Diamond Relat. Mater. 100, 107573 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations