Advertisement

Facile synthesis of Sb-Sb2O5@P@C composite and study for the supercapacitor application

  • Zongsheng Cao
  • Zhengchun Yang
  • Cong Zhang
  • Liqiang Xie
  • Xinhao Zhao
  • Peng Pan
  • Yujie Yuan
  • Wen QiEmail author
  • Jie HeEmail author
  • Honghao Zhang
  • Tao Xue
  • Ping Zhang
  • Jun Wei
  • Kailiang Zhang
  • Jinshi Zhao
Article
  • 11 Downloads

Abstract

A Sb-Sb2O5@P@C composite was synthesized using a two-step high-energy mechanical milling (HEMM) method using metal antimony, red phosphorus, and carbon as raw materials. XPS, XRD, and Raman spectroscopy clearly showed that the Sb was partially oxidized to become Sb2O5 during the milling process and that some of the red phosphorus was converted to black phosphorus. A specific capacitance of 109.7 F g−1 was achieved at a current density of 0.5 mA cm-2 in the obtained Sb-Sb2O5@P@C composite, and the packaged supercapacitor prepared with the Sb-Sb2O5@P@C composite was found to maintain a capacitance retention of 77.3% after 5000 cycles at a current density of 2 A g−1. This study therefore provides a possible direction for the selection of electrode materials the perform well for application in supercapacitors.

Keywords

HEMM Sb-Sb2O5@P@C Black phosphorus Supercapacitor Capacitance retention 

Notes

Acknowledgements

This research was funded by Beijing Natural Science Foundation (Grant No. 2184134), Tianjin Natural Science Foundation (Grant No. 18JCZDJC99800), National Natural Science Foundation of China (Grant No. 51502203), Tianjin Young Overseas High-level Talent Plans (Grant No. 01001502), Tianjin Science and Technology Foundation (Grant No. 17ZXZNGX00090) and Tianjin Development Program for Innovation and Entrepreneurship.

Supplementary material

10854_2019_2776_MOESM1_ESM.docx (2.9 mb)
Additional file 1: Table S1. Predictive value of variables on one-year global cognitive scores.

References

  1. 1.
    P. Simon, Y Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)CrossRefGoogle Scholar
  3. 3.
    Z.C. Yang, H.H. Zhang, B. Ma et al., Appl. Surf. Sci. 463, 150 (2019)CrossRefGoogle Scholar
  4. 4.
    Y. Hou, Y.W. Cheng, T. Hobson, J. Liu, Nano Lett. 10, 2727 (2010)CrossRefGoogle Scholar
  5. 5.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Li, M.C. Tekell, C. Liu, J.A. Hethcock, D. Fan, Adv. Funct. Mater. 28, 1800601 (2018)CrossRefGoogle Scholar
  7. 7.
    J.T. Sun, J. Niu, M.Y. Liu, J. Ji, M.L. Dou, F. Wang, Appl. Surf. Sci. 427, 807 (2018)CrossRefGoogle Scholar
  8. 8.
    Y.E. Yoo, J. Park, W. Kim, Appl. Surf. Sci. 433, 765 (2018)CrossRefGoogle Scholar
  9. 9.
    C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010)CrossRefGoogle Scholar
  10. 10.
    Q.Q. Zhang, Y. Wang, B.Q. Zhang, K.R. Zhao, P.G. He, B.Y. Huang, Carbon 127, 449 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.L. Deng, Y.J. Ji, H.M. Wu, F. Chen, Chem. Commun. 55, 1486 (2019)CrossRefGoogle Scholar
  12. 12.
    B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, OS Joo, J. Power Sources 134, 148 (2004)CrossRefGoogle Scholar
  13. 13.
    P.F. Wang, H. Liu, Y.X. Xu, Y.F. Chen, J. Yang, QQ Tan, Electrochim. Acta 194, 211 (2016)CrossRefGoogle Scholar
  14. 14.
    Q. Li, S.S. Zheng, Y.X. Xu, H.G. Xue, H. Pang, Chem. Eng. J. 333, 505 (2018)CrossRefGoogle Scholar
  15. 15.
    K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, ACS Appl. Mater. Interfaces 9, 15350 (2017)CrossRefGoogle Scholar
  16. 16.
    S.K. Shinde, M.B. Jalak, G.S. Ghodake et al., Appl. Surf. Sci. 466, 822 (2019)CrossRefGoogle Scholar
  17. 17.
    J.S. Xu, Y.D. Sun, M.J. Lu et al., Chem. Eng. J. 334, 1466 (2018)CrossRefGoogle Scholar
  18. 18.
    J.S. Xu, Y.D. Sun, M.J. Lu, L. Wang, J. Zhang, X.Y. Liu, Sci. China Mater. 62, 699 (2019)CrossRefGoogle Scholar
  19. 19.
    J.S. Xu, Y.D. Sun, M.J. Lu et al., Acta Mater. 152, 162 (2018)CrossRefGoogle Scholar
  20. 20.
    S.H. Shi, G.P. Wan, L.H. Wu et al., J. Colloid Interface Sci. 537, 142 (2019)CrossRefGoogle Scholar
  21. 21.
    X.Y. Guo, Q. Zhang, Q. Li, H.P. Yu, YX Liu, Polymers 11, 14 (2019)Google Scholar
  22. 22.
    H.F. Feng, S.Y. Gao, J. Shi, L. Zhang, Z.M. Peng, SK Cao, Electrochim. Acta 299, 116 (2019)CrossRefGoogle Scholar
  23. 23.
    P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, SJ Kim, ACS Appl. Mater. Interfaces 11, 624 (2019)CrossRefGoogle Scholar
  24. 24.
    P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S.J. Kim, J. Colloid Interface Sci. 536, 62 (2019)CrossRefGoogle Scholar
  25. 25.
    L. Zu, X. Gao, H.Q. Lian et al., J. Alloys Compd. 770, 26 (2019)CrossRefGoogle Scholar
  26. 26.
    E. Martinez-Perinan, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, CE Banks, Adv. Energy Mater. 8, 8 (2018)CrossRefGoogle Scholar
  27. 27.
    J.H. Choi, M.H. Lee, H.Y. Choi, C.M. Park, S.M. Lee, J.H. Choi, J. Appl. Electrochem. 49, 207 (2019)CrossRefGoogle Scholar
  28. 28.
    K.F. Li, D.W. Su, H. Liu, G.X. Wang, Electrochim. Acta 177, 304 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Zhao, S.A. Vail, Y.H. Lu et al., ACS Appl. Mater. Interfaces 8, 13871 (2016)CrossRefGoogle Scholar
  30. 30.
    S.S. Karade, K. Banerjee, S. Majumder, B.R. Sankapal, Int. J. Hydrog. Energy 41, 21278 (2016)CrossRefGoogle Scholar
  31. 31.
    B.N. Reddy, M. Deepa, A.G. Joshi, Phys. Chem. Chem. Phys. 16, 2062 (2014)CrossRefGoogle Scholar
  32. 32.
    C.M. Park, HJ Sohn, Adv. Mater. 19, 2465 (2007)CrossRefGoogle Scholar
  33. 33.
    R.S. Guo, J.T. Chen, B.J. Yang et al., Adv. Funct. Mater. 27, 11 (2017)Google Scholar
  34. 34.
    L. Chen, G.M. Zhou, Z.B. Liu et al., Adv. Mater. 28, 510 (2016)CrossRefGoogle Scholar
  35. 35.
    J.F. Qian, D. Qiao, X.P. Ai, Y.L. Cao, HX Yang, Chem. Commun. 48, 8931 (2012)CrossRefGoogle Scholar
  36. 36.
    S.H. Aldave, M.N. Yogeesh, W.N. Zhu et al., 2D Mater. 3, 9 (2016)CrossRefGoogle Scholar
  37. 37.
    R. Nilsson, T. Lindblad, A. Andersson, Catal. Lett. 29, 409 (1994)CrossRefGoogle Scholar
  38. 38.
    J.A.T. Verhoeven, HV Doveren, Surf. Sci. 123, 369 (1982)CrossRefGoogle Scholar
  39. 39.
    M. Taniguchi, S. Suga, M. Seki et al., Solid State Commun. 45, 59 (1983)CrossRefGoogle Scholar
  40. 40.
    S.O. Kim, A. Manthiram, Chem. Commun. 52, 4337 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Watanabe, F. Nederberg, B. Atthoff, T. Bowden, J. Hilborn, K. Ishihara, Mater. Sci. Eng. C 27, 227 (2007)CrossRefGoogle Scholar
  42. 42.
    N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, Electrochim. Acta 165, 338 (2015)CrossRefGoogle Scholar
  43. 43.
    L.T. Le, M.H. Ervin, H.W. Qiu, B.E. Fuchs, WY Lee, Electrochem. Commun. 13, 355 (2011)CrossRefGoogle Scholar
  44. 44.
    T. Duangchuen, A. Karaphun, L. Wannasen, I. Kotutha, E. Swatsitang, Appl. Surf. Sci. 487, 634 (2019)CrossRefGoogle Scholar
  45. 45.
    C.H. Chen, D.S. Tsai, W.H. Chung, K.Y. Lee, Y.M. Chen, Y.S. Huang, J. Power Sources 205, 510 (2012)CrossRefGoogle Scholar
  46. 46.
    R.K. Mishra, M. Krishnaih, S.Y. Kim, A.K. Kushwaha, Mater. Lett. 236, 167 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Electrical and Electronic Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication DevicesTianjin University of TechnologyTianjinPeople’s Republic of China
  2. 2.Materials CenterBeijing Institute of Collaborative InnovationBeijingPeople’s Republic of China
  3. 3.School of Electrical and Information EngineeringTianjin UniversityTianjinPeople’s Republic of China
  4. 4.Singapore Institute of Manufacturing TechnologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
  5. 5.Center for Analysis and TestTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations