Surface modification influenced properties of silicon nanowires grown by Ag assisted chemical etching with ECR hydrogen plasma treatment

  • Karanam Madhavi
  • Monalisa Ghosh
  • G. Mohan Rao
  • R. Padma SuvarnaEmail author


Silicon nanowires (SiNWs) are fabricated by Ag assisted chemical etching and are treated with hydrogen plasma created by electron cyclotron resonance (ECR) plasma system at 600 watts microwave power for various time durations (0–30 min). The hydrogen plasma exposure on the surface of the SiNWs reduced the surface roughness and increased the crystalline nature. SEM analysis revealed that the diameter of the SiNWs decreased on plasma exposure. The electrical conduction measurements suggested that the hydrogen plasma exposure for 5 min on the SiNW surface enhanced the electrical conductivity when compared to as fabricated SiNW surface. The hydrophobic nature of fabricated SiNWs was transformed to hydrophilic at plasma exposure for lower time duration. On plasma exposure of NWs for 30 min the sample turned hydrophobic. Study of different properties of the SiNWs before and after plasma treatment revealed that there is pronounced effect of plasma on the nature of SiNWs.



  1. 1.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885 (2007)CrossRefGoogle Scholar
  2. 2.
    R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon. 3, 569 (2009)CrossRefGoogle Scholar
  3. 3.
    X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 77, 2572 (2000)CrossRefGoogle Scholar
  4. 4.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 53, 5509 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Najar, A.B. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat et al., Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. J. Appl. Phys. 112, 033502 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Dutta, S. Paul, D. Galipeau, V. Bommisetty, Effect of hydrogen plasma treatment on the surface morphology, microstructure and electronic transport properties of nc-Si:H. Thin Solid Films 518, 6811 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Sriraman, S. Agarwal, E.S. Aydil, D. Maroudas, Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 62, 418 (2002)Google Scholar
  9. 9.
    B. Garrido, A. Perez-Rodriguez, J.R. Mornte, A. Achiq, F. Gourbilleau, R. Madelon, R. Rizk, Structural, optical, and electrical properties of nanocrystalline silicon films deposited by hydrogen plasma sputtering. J. Vac. Sci. Technol. B 16, 1851 (1998)CrossRefGoogle Scholar
  10. 10.
    W.B. Choi, C.M. Ju, J.S. Lee, M.Y. Sung, Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment. J. Korean Phys. Soc. 37, 878 (2000)CrossRefGoogle Scholar
  11. 11.
    S. Sriraman, M.S. Valipa, E.S. Aydil, D. Maroudas, Hydrogen-induced crystallization of amorphous silicon thin films. J. Appl. Phys. 100, 053514 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Godet, N. Layadi, P.R. Cabarrocas, Role of mobile hydrogen in the amorphous silicon recrystallization. Appl. Phys. Lett. 66, 3146 (1995)CrossRefGoogle Scholar
  13. 13.
    I. Kaiser, N.H. Nickel, W. Fuhs, W. Pilz, Hydrogen mediated structural changes of amorphous and microcrystaline silicon. Phys. Rev. B 58, R1718 (1998)CrossRefGoogle Scholar
  14. 14.
    K.D. Vargheese, G.M. Rao, Electron cyclotron resonance plasma source for ion assisted deposition of thin films. Rev. Sci. Instrum. 71, 467 (2000)CrossRefGoogle Scholar
  15. 15.
    A.K. Srivastava, M. Dahimene, T. Grotjohn, J. Asmussen, Experimental characterization of a compact ECR ion source. Rev. Sci. Instrum. 63, 2556 (1992)CrossRefGoogle Scholar
  16. 16.
    R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals. Nanotechnology 25, 045703 (2014)CrossRefGoogle Scholar
  17. 17.
    S.C. Shiu, S.B. Lin, S.C. Hung, C.F. Lin, Influence of pre-surface treatment on the morphology of silicon nano wires by metal assisted chemical etching. Appl. Surf. Sci. 257, 1829 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Madhavi, P. Suvarnaa, M. Ghosh, H. Shaik, G. Mohan Rao, Effect of plasma ion etching on Si nanowires towards superhydrophobicity. Mater. Today Proc. 3, 1907 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22, 155606 (2011)CrossRefGoogle Scholar
  20. 20.
    F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello, S.T. Lee, Electron field emission from silicon nanowires. Appl. Phys. Lett. 75, 1700 (1999)CrossRefGoogle Scholar
  21. 21.
    A. Hochbaum, D. Gargas, Y. Hwang, P. Yang, Single crystalline mesoporous siliconnanowires. Nano Lett. 9, 3550 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Patterson, The Scherer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)CrossRefGoogle Scholar
  23. 23.
    M.F. Beaux, I.I.N.J. Bridges, M. DeHart, T.F. Bitterwolf, D.N. McIlroy, Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. Appl. Surf. Sci. 257, 5766 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Ouraa, V.G. Lifshits, A.A. Saranina, A.V. Zotova, M. Katayamaa, Hydrogen interaction with clean and modified silicon surfaces. Surf. Sci. Rep. 35, 1 (1999)CrossRefGoogle Scholar
  25. 25.
    E.J. Nemanick, P.T. Hurley, L.J. Webb, D.W. Knapp, D.J. Michalak, B.S. Brunschwig, N.S. Lewis, Chemical and electrical passivation of single crystal silicon (100) surfaces through a two-step chlorination/alkylation process. J. Phys. Chem. B 110, 14770 (2006)CrossRefGoogle Scholar
  26. 26.
    E. San Andres, A. del Prado, I. Martil, G. Gonza lez-Dıaz, Bonding configuration and density of defects of SiO x H y thin films deposited by the electron cyclotron resonance plasma method. J. Appl. Phys. 94(12), 7462–7469 (2003)CrossRefGoogle Scholar
  27. 27.
    A.I. Belogorokhov, S.A. Gavrilov, P.K. Kashkarov, I.A. Belogorokhov, FTIR investigation of porous silicon formed in deutrofluoric acid based solutions. Phys. Status Solidi 202, 1581 (2005)CrossRefGoogle Scholar
  28. 28.
    X. Liu, R.K. Fu, C. Ding, P.K. Chu, Hydrogen plasma surface activation of silicon for biomedical applications. Biomol. Eng. 24, 113 (2007)CrossRefGoogle Scholar
  29. 29.
    X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16(2), 71 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Dutta, M. Kumar, M. Rathi, S.P. Ahrenkiel, S. Paul, D. Galipeau, V. Bommisetty, Mechanism of the enhancement of electrical conductivity of nanocrystalline silicon due to hydrogen plasma treatment. J. Nanosci. Nanotechnol. 13(10), 6711–6720 (2013)CrossRefGoogle Scholar
  31. 31.
    C.H. Seager, D.S. Ginley, Passivation of grain boundaries in polycrystalline silicon. Appl. Phys. Lett. 34, 337 (1979)CrossRefGoogle Scholar
  32. 32.
    N.H. Nickel, N.M. Johnson, W.B. Jackson, Hydrogen passivation of grainboundary defects in polycrystalline silicon thin films. Appl. Phys. Lett. 62(25), 3285–3287 (1993)CrossRefGoogle Scholar
  33. 33.
    K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda, W. Fukato, I. Shimizu, Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon. Appl. Phys. Lett. 71, 3403 (1997)CrossRefGoogle Scholar
  34. 34.
    J. Tang, J. Shi, L. Zhou, Z. Ma, Fabrication and optical properties f silicon nanowires arrays by electroless Ag–catalyzed etching. Nano-Micro Lett. 3(2), 129 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsJawaharlal Nehru Technological UniversityAnantapurIndia
  2. 2.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations