Skip to main content
Log in

Influence of the hydrogen content on the optical properties of TiOx thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, dark Ti(OxH)y films were obtained by DC magnetron reactive sputtering under different oxygen partial pressures (PO2) starting from a high base pressure chamber atmosphere (10−5 mbar) with the purpose of investigating the visible light absorption dependence of the hydrogen content and stoichiometry. The TiOx film compositions, thicknesses, and elemental depth profiles were measured by ion beam analysis (IBA) techniques in a self-consistent approach. The optical properties were investigated by visible and near-infrared spectrophotometry, and the crystallography was examined by small-angle X-ray diffraction. The films deposited at a low PO2 were dark, and as the partial oxygen pressure increases, they became transparent. The IBA showed that the hydrogen content exponentially decreased as the PO2 increased. The optical constants for the films, n and k, are dependent on oxygen and hydrogen ratio as well as the optical band gap that can be modulated from 0.40 to 3.25 eV, and thus a significant improved PEC activity. These modulations may be useful for optical or electronic devices as a variable semiconductor or dielectric layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Zhang, C. Xu, G. Xu, S. Tan, J. Zhang, Amorphous titanium dioxide film with improved electrochromism in near-infrared region. Opt. Mater. (Amst) 89, 191–196 (2019). https://doi.org/10.1016/j.optmat.2019.01.034

    Article  CAS  Google Scholar 

  2. R.B.P. Marcelino, C.C. Amorim, M. Ratova, B. Delfour-Peyrethon, P. Kelly, Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chem. Eng. J. 370, 1251–1261 (2019). https://doi.org/10.1016/j.cej.2019.03.284

    Article  CAS  Google Scholar 

  3. A. Obstarczyk, D. Kaczmarek, D. Wojcieszak, M. Mazur, J. Domaradzki, T. Kotwica, R. Pastuszek, D. Schmeisser, P. Mazur, M. Kot, Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application. Mater. Des. 175, 107822 (2019). https://doi.org/10.1016/j.matdes.2019.107822

    Article  CAS  Google Scholar 

  4. Q. Jin, W. Wen, J.Q. Bai, J.M. Wu, Construction of Ni-doped belt-on-belt TiO2 thin film to assist photodegradation of rhodamine B in water. Thin Solid Films 683, 111–117 (2019). https://doi.org/10.1016/j.tsf.2019.05.040

    Article  CAS  Google Scholar 

  5. J. Kim, S. Lee, H. Im, The effect of target density and its morphology on TiO2 thin films grown on Si (100) by PLD. Appl. Surf. Sci. 151, 6–16 (1999). https://doi.org/10.1016/S0169-4332(99)00269-X

    Article  CAS  Google Scholar 

  6. S. Lin, Y. Chen, C. Wang, Effect of heat treatment on electrochromic properties of TiO2 thin films. J. Solid State Electrochem. 12, 1481–1486 (2008). https://doi.org/10.1007/s10008-007-0502-2

    Article  CAS  Google Scholar 

  7. Z. Wang, U. Helmersson, P.-O. Käll, Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films 405, 50–54 (2002). https://doi.org/10.1016/S0040-6090(01)01767-9

    Article  CAS  Google Scholar 

  8. A. Miyamura, K. Kaneda, Y. Sato, Y. Shigesato, Effects of internal stress on photocatalytic properties of TiO2 films. Thin Solid Films 516, 4603–4608 (2008). https://doi.org/10.1016/j.tsf.2007.05.079

    Article  CAS  Google Scholar 

  9. L.J. Meng, M. Dos Santos, The influence of oxygen partial pressure on the properties of DC reactive magnetron sputtered titanium oxide films. Appl. Surf. Sci. 68, 319–325 (1993). https://doi.org/10.1016/0042-207X(94)90080-9

    Article  CAS  Google Scholar 

  10. K. Yoshimura, T. Miki, S. Tanemura, TiO2 electrochromic thin films by reactive direct current magnetron sputtering. J. Vac. Sci. Technol. A 2673, 1–5 (2014). https://doi.org/10.1116/1.580941

    Article  Google Scholar 

  11. M.R. Hantehzadeh, M.A. Amouha, S. Solaymani, T. Osati, B. Ghobadi, Physical properties of titanium oxide thin films prepared by DC magnetron sputtering: Influence substrate temperature and O2/Ar in the gas mixture. J. Fusion Energy 32, 622–626 (2013). https://doi.org/10.1007/s10894-013-9626-9

    Article  CAS  Google Scholar 

  12. S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, P. Section, F. Jena, Influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive d.c. plasmatron sputtering. Thin Solid Films 83, 239–245 (1981). https://doi.org/10.1016/0040-6090(81)90673-8

    Article  CAS  Google Scholar 

  13. Â. Mu, H. Selhofer, R. Müller, Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Films 351, 180–183 (1999). https://doi.org/10.1016/S0040-6090(99)00305-3

    Article  Google Scholar 

  14. N. Özer, Reproducibility of the coloration processes in TiO2 films. Thin Solid Films 214, 17–24 (1992). https://doi.org/10.1016/0040-6090(92)90450-P

    Article  Google Scholar 

  15. H. Yu, Y. Li, L. Zhao, G. Li, J. Li, H. Rong, Z. Liu, Novel MoO3 -TiO2 composite nanorods films with improved electrochromic performance. Mater. Lett. 169, 65–68 (2016). https://doi.org/10.1016/j.matlet.2016.01.097

    Article  CAS  Google Scholar 

  16. M.E. Yeoh, K.Y. Chan, Efficiency enhancement in dye-sensitized solar cells with ZnO and TiO2 blocking layers. J. Electron. Mater. 48, 4342–4350 (2019). https://doi.org/10.1007/s11664-019-07207-5

    Article  CAS  Google Scholar 

  17. T. Wang, M. Zhang, K. Liu, J. Jiang, Y. Zhao, J. Ma, T. Liu, The effect of the TiO2 film on the performance of the optical fiber SPR sensor. Opt. Commun. 448, 93–97 (2019). https://doi.org/10.1016/j.optcom.2019.05.023

    Article  CAS  Google Scholar 

  18. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science (80-.) 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

    Article  CAS  Google Scholar 

  19. X. Wang, L. Mayrhofer, M. Hoefer, S. Estrade, L. Lopez-Conesa, H. Zhou, Y. Lin, F. Peiró, Z. Fan, H. Shen, L. Schaefer, M. Moseler, G. Braeuer, A. Waag, Facile and efficient atomic hydrogenation enabled black TiO2 with enhanced photo-electrochemical activity via a favorably low-energy-barrier pathway. Adv. Energy Mater. 9, 1900725 (2019). https://doi.org/10.1002/aenm.201900725

    Article  CAS  Google Scholar 

  20. Y. Liu, L. Tian, X. Tan, X. Li, X. Chen, Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431–441 (2017). https://doi.org/10.1016/j.scib.2017.01.034

    Article  CAS  Google Scholar 

  21. A.R. Bally, P. Hones, R. Sanjinés, P.E. Schmid, F. Lévy, Mechanical and electrical properties of fcc TiO1+x thin films prepared by r.f. reactive sputtering. Surf. Coat. Technol. 108–109, 166–170 (1998). https://doi.org/10.1016/s0257-8972(98)00629-x

    Article  Google Scholar 

  22. E. Şilik, S. Pat, S. Özen, R. Mohammadigharehbagh, H.H. Yudar, C. Musaoğlu, Ş. Korkmaz, Electrochromic properties of TiO2 thin films grown by thermionic vacuum arc method. Thin Solid Films 640, 27–32 (2017). https://doi.org/10.1016/j.tsf.2017.07.073

    Article  CAS  Google Scholar 

  23. M. Mayer, SIMNRA User´s Guide, Report IPP 9/113 (Max-Planck-Institut für Plasmaphysik, Garching, 1997)

    Google Scholar 

  24. J. Demarche, G. Terwagne, Precise measurement of the differential cross section from the 16O (α, α) 16O elastic reaction at 165° and 170° between 2.4 and 6.0 MeV. J. Appl. Phys. 100, 0–7 (2006). https://doi.org/10.1063/1.2402868

    Article  CAS  Google Scholar 

  25. A.F. Gurbich, Evaluation of non-Rutherford proton elastic scattering cross section for carbon. Nucl. Instrum. Methods Phys. Res. Sect. B 136–138, 60–65 (1998). https://doi.org/10.1016/s0168-583x(97)00837-9

    Article  Google Scholar 

  26. J. Cisneros, G. Rego, M. Tomyiama, S. Bilac, J. Gonçalves, A. Rodriguez, Z. Arguello, A method for the determination of the complex refractive index of non-metallic thin films using photometric measurements at normal incidence. Thin Solid Films 100, 155–167 (1983)

    Article  CAS  Google Scholar 

  27. Z. El Mandouh, M. Selim, Physical properties of vanadium pentoxide sol gel films. Thin Solid Films 371, 259–263 (2000). https://doi.org/10.1016/S0040-6090(00)01003-8

    Article  Google Scholar 

  28. M. Cesaria, A.P. Caricato, M. Martino, Realistic absorption coefficient of ultrathin films. J. Opt. (United Kingdom) 14, 105701 (2012). https://doi.org/10.1088/2040-8978/14/10/105701

    Article  CAS  Google Scholar 

  29. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Plenum, London, 1974). https://doi.org/10.1007/978-1-4615-8705-7

    Book  Google Scholar 

  30. A. Pérez-Pacheco, C. Prieto, R. Castañeda-Guzmán, J. García-López, Influence of the growth conditions on the stoichiometry and on the optical properties of titanium oxide thin films prepared by reactive sputtering. Thin Solid Films 517, 5415–5418 (2009). https://doi.org/10.1016/j.tsf.2009.01.050

    Article  CAS  Google Scholar 

  31. E.M. Girotto, I.A. Santos, Medidas de resistividade elétrica DC em sólidos: como efetuá-las corretamente. Quim. Nova 25, 639–647 (2002). https://doi.org/10.1590/s0100-40422002000400019

    Article  CAS  Google Scholar 

  32. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974). https://doi.org/10.1116/1.1312732

    Article  CAS  Google Scholar 

  33. S. Khan, I. Ahmed, A. Shah, Structural and optical properties investigation of DC magnetron sputtered β-TiO2 thin film. Appl. Surf. Sci. 317, 607–613 (2014). https://doi.org/10.1016/j.apsusc.2014.08.131

    Article  CAS  Google Scholar 

  34. S. Schiller, G. Beister, W. Sieber, Reactive high rate D.C. sputtering: deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode. Thin Solid Films 111, 259–268 (1984). https://doi.org/10.1016/0040-6090(84)90147-0

    Article  CAS  Google Scholar 

  35. B. Zhao, J. Zhou, L. Rong, Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates. Trans. Nonferrous Met. Soc. China 20, 1429–1433 (2010). https://doi.org/10.1016/S1003-6326(09)60316-2

    Article  CAS  Google Scholar 

  36. J.F. Ziegler, J.P. Biersack, in Treatise on Heavy-Ion Science, ed. by D.A. Bromley. The Stopping and Range of Ions in Matter (Springer, Boston, MA, 1985)

    Google Scholar 

  37. L. Meng, M. Andritschky, M.P. Santos, The effect of substrate temperature on the properties of sputtered titanium oxide films. Appl. Surf. Sci. 6566, 235–239 (1993)

    Article  Google Scholar 

  38. I. Luciu, R. Bartali, N. Laidani, Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2–x thin films deposited by RF sputtering. J. Phys. D 45, 345302 (2012). https://doi.org/10.1088/0022-3727/45/34/345302

    Article  CAS  Google Scholar 

  39. M. Chandra Sekhar, P. Kondaiah, B. Radha Krishna, S. Uthanna, Effect of oxygen partial pressure on the electrical and optical properties of DC magnetron sputtered amorphous TiO2 films. J. Spectrosc. 2013, 3–10 (2013)

    Article  Google Scholar 

  40. M. Bouroushian, T. Kosanovic, Characterization of thin films by low incidence X-ray diffraction. Cryst. Struct. Theory Appl. 1, 35–39 (2012). https://doi.org/10.4236/csta.2012.13007

    Article  CAS  Google Scholar 

  41. M. Zhang, G. Lin, C. Dong, L. Wen, Amorphous TiO2 films with high refractive index deposited by pulsed bias arc ion plating. Surf. Coat. Technol. 201, 7252–7258 (2007). https://doi.org/10.1016/j.surfcoat.2007.01.043

    Article  CAS  Google Scholar 

  42. D. Pjevi, M. Obradovi, T. Marinkovi, A. Grce, M. Milosavljevi, R. Grieseler, T. Kups, M. Wilke, P. Schaaf, Properties of sputtered TiO2 thin films as a function of deposition and annealing parameters. Physica B 463, 20–25 (2015). https://doi.org/10.1016/j.physb.2015.01.037

    Article  CAS  Google Scholar 

  43. B.S. Richards, Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 79, 369–390 (2003). https://doi.org/10.1016/S0927-0248(02)00473-7

    Article  CAS  Google Scholar 

  44. M. Mazur, D. Wojcieszak, J. Domaradzki, D. Kaczmarek, S. Song, F. Placido, TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-Electron Rev. 21, 233–238 (2013). https://doi.org/10.2478/s11772

    Article  CAS  Google Scholar 

  45. C. Deng, H. Ki, Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 37–45 (2016). https://doi.org/10.1016/j.solmat.2015.11.043

    Article  CAS  Google Scholar 

  46. Y. Zhao, T. Hou, Y. Li, K.S. Chan, S.-T. Lee, Effective increasing of optical absorption of TiO2 by introducing trivalent titanium. Appl. Phys. Lett. 102, 171902 (2013)

    Article  Google Scholar 

  47. H. Jin, L. Wang, D.J. Searles, C. Sun, Comparison of the effect of hydrogen incorporation and oxygen vacancies on the properties of anatase TiO2: electronics, optical absorption, and interaction with water. Chin Sci. Bull. 59, 2175–2180 (2014). https://doi.org/10.1007/s11434-014-0229-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CAPES, CNPq, and the FAPESP (contract FAPESP2013/09105-0) who financially supported part of this study; To LAMULT (Unicamp-SP) for sample deposition and XRD facilities. To the Brazilian foundations, CNPq and CAPES, for their scholarships and research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Urbano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorin, L.H.C., da Silva Martins, L., Urbano, A. et al. Influence of the hydrogen content on the optical properties of TiOx thin films. J Mater Sci: Mater Electron 31, 1672–1680 (2020). https://doi.org/10.1007/s10854-019-02685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02685-z

Navigation