Advertisement

The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application

  • Yonghui Zheng
  • Ruijuan Qi
  • Yan ChengEmail author
  • Zhitang Song
Article
  • 4 Downloads

Abstract

Sb2Te3 (ST) as phase-change material has the advantage of high speed, but very poor thermal stability, which cannot be directly used for phase-change random-access memory (PCRAM). In this study, Zr1.5(Sb2Te3)98.5 (ZST) material was investigated for PCRAM application. Zr dopant can efficiently improve the thermal stability of ST alloy, stabilizing its amorphous state at room temperature. During annealing process, amorphous ZST film firstly transfers to face-centered cubic structure with small grain size, and following the second switching to hexagonal phase, it is delayed to 225 °C, which is more than 100 °C higher than ST alloy, confirming by in situ heating transmission electron microscopy. Furthermore, ZST-based PCRAM cell has good endurance up to 1.5 × 104 electrical cycles, a high amorphous resistance larger than 106 Ω and a resistance ratio of about 1.5 orders of magnitude. The reversible phase transition can be realized by a pulse of 100 ns.

Notes

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFA0303403, 2017YFA0206101, 2017YFB0405601).

References

  1. 1.
    R.F. Freitas, W.W. Wilcke, IBM J. Res. Dev. 52, 439–447 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6(11), 824–832 (2007)CrossRefGoogle Scholar
  3. 3.
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, J. Appl. Phys. 85(8), 5828–5833 (1999)CrossRefGoogle Scholar
  4. 4.
    H. Akinaga, H. Shima, Proc. IEEE 98(12), 2237–2251 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Arimoto, H. Ishiwara, MRS Bull. 29(11), 823–828 (2004)CrossRefGoogle Scholar
  6. 6.
    W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 4(3), 150–168 (2019)CrossRefGoogle Scholar
  7. 7.
    A. Lotnyk, M. Behrens, B. Rauschenbach, Nanoscale Adv. 1(10), 3836–3857 (2019)CrossRefGoogle Scholar
  8. 8.
    S.R. Ovshinsky, Phys. Rev. Lett. 21(20), 1450–1453 (1968)CrossRefGoogle Scholar
  9. 9.
    G. Atwood, Science 321(5886), 210–211 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Kyrsta, R. Cremer, D. Neuschütz, M. Laurenzis, P.H. Bolivar, Appl. Surf. Sci. 179(1–4), 55–60 (2001)CrossRefGoogle Scholar
  11. 11.
    B. Liu, Z. Song, T. Zhang, S. Feng, B. Chen, Appl. Surf. Sci. 242(1), 62–69 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, X. Chen, Y. Cheng, X. Zhou, S. Lv, Y. Chen, Y. Wang, M. Zhou, H. Peng, Y. Zhang, Z. Song, G. Feng, IEEE Electron Device Lett. 35(5), 536–538 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Wang, T. Zhang, Z. Song, L. Wu, B. Liu, S. Feng, B. Chen, Jpn. J. Appl. Phys. 47(2), 843–846 (2008)CrossRefGoogle Scholar
  14. 14.
    Z. Li, C. Si, J. Zhou, H. Xu, Z. Sun, ACS Appl. Mater. Interfaces 8(39), 26126–26134 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Hu, B. Liu, Z. Li, J. Zhou, Z. Sun, Comput. Mater. Sci. 165, 51–58 (2019)CrossRefGoogle Scholar
  16. 16.
    Y. Zheng, Y. Cheng, M. Zhu, X. Ji, Q. Wang, S. Song, Z. Song, W. Li, S. Feng, Appl. Phys. Lett. 108, 052107 (2016)CrossRefGoogle Scholar
  17. 17.
    B.J. Kooi, W.M.G. Groot, JThM De Hosson, J. Appl. Phys. 95, 924–932 (2004)CrossRefGoogle Scholar
  18. 18.
    Y. Zheng, M. Xia, Y. Cheng, F. Rao, K. Ding, W. Liu, Y. Jia, Z. Song, S. Feng, Nano Res. 9(11), 3453–3462 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Y. Zheng, G. Liu, T. Li, T. Guo, Y. Cheng, S. Lv, S. Song, K. Ren, Z. Song, Appl. Phys. Lett. 112, 133104 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Guo, S. Song, Z. Song, X. Ji, Y. Xue, L. Chen, Y. Cheng, B. Liu, L. Wu, M. Qi, S. Feng, Adv. Electron Mater. 4(8), 1800083 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, E. Ma, Science 358(6369), 1423–1427 (2017)CrossRefGoogle Scholar
  22. 22.
    T.L. Anderson, H.B. Krause, Acta Cryst. B 30(5), 1307–1317 (1974)CrossRefGoogle Scholar
  23. 23.
    Y. Lu, S. Song, Z. Song, L. Wu, B. Liu, S. Feng, X. Guo, J. Phys. D 44(14), 145102 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.Key Laboratory of Polar Materials and Devices (MOE), Department of ElectronicsEast China Normal UniversityShanghaiChina

Personalised recommendations