Advertisement

Tailoring electromechanical performance in BiScO3-modified Bi0.5Na0.5TiO3-based lead-free piezoceramics

  • Leijie Wang
  • Wangfeng BaiEmail author
  • Xinyu Zhao
  • Yuqin Ding
  • Fei Wen
  • Lili Li
  • Wei Wu
  • Peng ZhengEmail author
  • Jiwei ZhaiEmail author
Article
  • 20 Downloads

Abstract

The strain response of lead-free ternary solid solution (1 − x) (0.94 Bi0.5Na0.5TiO3–0.06BaTiO3)–xBiScO3 (BNT–BT–BS) have been tailored by controlling the phase transition temperature. The effects of BiScO3 on the phase structure, dielectric, ferroelectric, piezoelectric properties, and electric field-induced strain are systematically investigated. A schematic phase diagram has also been established to clarify the relationship between strain behavior and structure evolution. The field-induced strain increases progressively, and a large strain of 0.35% with Smax/Emax = 471 pm/V is achieved at the critical composition x = 0.03, owing to the shift of the ferroelectric-to-relaxor transition temperature TF–R to ambient temperature. Intriguingly, the established correlation between strain response and TF–R demonstrates that the optimization of strain behavior of BNT-based ceramics can be realized though the regulation of TF–R to room temperature. Furthermore, a high and thermally stable electrostrictive coefficient Q33 of 0.018 m4/C2 can also be attained at the composition x = 0.06. In this study, it is believed that the modulation of phase transition temperature is feasible to achieve the large strain response in BNT-based ceramics.

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (Grant No. 51502067), Natural Science Foundation of Zhejiang Province (LQ16E020004), key research, and development projects of Zhejiang Province (2017C01056).

References

  1. 1.
    J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R. 135, 1–57 (2019)CrossRefGoogle Scholar
  2. 2.
    T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater Sci. 98, 552–624 (2019)CrossRefGoogle Scholar
  3. 3.
    E. Cross, Nature 432, 24 (2004)CrossRefGoogle Scholar
  4. 4.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, J. Eur. Ceram. Soc. 37, 2365–2371 (2017)CrossRefGoogle Scholar
  6. 6.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012)CrossRefGoogle Scholar
  8. 8.
    S.-T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, D. Damjanovic, Adv. Mater. 21, 4716–4720 (2009)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, Y. Liu, R.L. Withers, F. Brink, H. Chen, Chem. Mater. 23, 219–228 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, C.M. Leung, J. Roedel, J. Am. Ceram. Soc. 95, 1955–1959 (2012)CrossRefGoogle Scholar
  11. 11.
    X. Liu, X. Tan, J. Appl. Phys. 120, 034102 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Hao, Z. Xu, R. Chu, W. Li, J. Du, G. Li, J. Phys. D 48, 472001 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35, 2501–2512 (2015)CrossRefGoogle Scholar
  14. 14.
    S.-T. Zhang, B. Yang, W. Cao, Acta Mater. 60, 469–475 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Bai, D. Chen, Y. Huang, B. Shen, J. Zhai, Z. Ji, J. Alloys Compd. 667, 6–17 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Wang, A. Hussain, W. Jo, J. Rödel, D.D. Viehland, J. Am. Ceram. Soc. 95, 2241–2247 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Sens. Actuators A 158, 84–89 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Li, X. Lou, X. Ke, S. Cheng, S. Mi, X. Wang, J. Shi, X. Liu, G. Dong, H. Fan, Y. Wang, X. Tan, Acta Mater. 128, 337–344 (2017)CrossRefGoogle Scholar
  19. 19.
    W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)CrossRefGoogle Scholar
  20. 20.
    W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel, Appl. Phys. Lett. 102, 192903 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Marchet, E. Boucher, V. Dorcet, J.P. Mercurio, J. Eur. Ceram. Soc. 26, 3037–3041 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Hiruma, H. Nagata, T. Takenaka, Appl. Phys. Lett. 95, 052903 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Hussain, A. Maqbool, R.A. Malik, I. Qazi, T.-K. Song, W.-J. Kim, M.-H. Kim, Phys. Status Solidi A 215, 1700942 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110–118 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Dong, H. Fan, J. Shi, Q. Li, J. Am. Ceram. Soc. 101, 3947–3955 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Gao, Z. Yao, L. Ning, G. Dong, H. Fan, Q. Li, Adv. Eng. Mater. 19, 1700125 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  28. 28.
    D.-S. Yin, Z.-H. Zhao, Y.-J. Dai, Z. Zhao, X.-W. Zhang, S.-H. Wang, S. Zhang, J. Am. Ceram. Soc. 99, 2354–2360 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Ullah, C. Won Ahn, A. Ullah, I. Won Kim, Appl. Phys. Lett. 103, 022906 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Rout, S. Parida, E. Sinha, P. Barhai, I. Kim, Curr. Appl. Phys. 10, 917–922 (2010)CrossRefGoogle Scholar
  31. 31.
    I. Clark, F. Marques, D. Sinclair, J. Eur. Ceram. Soc. 22, 579–583 (2002)CrossRefGoogle Scholar
  32. 32.
    Z. Peng, X. Zeng, F. Cao, X. Yang, J. Alloys Compd. 695, 626–631 (2017)CrossRefGoogle Scholar
  33. 33.
    X.-Y. Geng, J. Zhang, R.-X. Wang, X.-Z. Deng, L. Sun, Z.-B. Gu, S.-T. Zhang, J. Am. Ceram. Soc. 100, 5659–5667 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Shi, W. Tian, X. Liu, H. Fan, J. Am. Ceram. Soc. 100, 1080–1090 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Tian, F. Wang, X. Ye, Y. Xie, T. Wang, Y. Tang, D. Sun, W. Shi, Scripta Mater. 83, 25–28 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Yan, M. Zheng, S. Sun, M. Zhu, Y. Hou, Dalton Trans. 47, 9257–9266 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Bai, L. Wang, P. Zheng, F. Wen, L. Li, J. Zhai, Z. Ji, Ceram. Int. 44, 16040–16050 (2018)CrossRefGoogle Scholar
  38. 38.
    F.-Z. Yao, Q. Yu, K. Wang, Q. Li, J.-F. Li, RSC Adv. 4, 20062–20068 (2014)CrossRefGoogle Scholar
  39. 39.
    J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, J. Mater. Chem. C 3, 8780–8787 (2015)CrossRefGoogle Scholar
  40. 40.
    K.T. Seifert, W. Jo, J. Rödel, J. Am. Ceram. Soc. 93, 1392–1396 (2010)Google Scholar
  41. 41.
    Y. Zhang, D.C. Lupascu, E. Aulbach, I. Baturin, A. Bell, J. Rödel, Acta Mater. 53, 2203–2213 (2005)CrossRefGoogle Scholar
  42. 42.
    H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113, 154102 (2013)CrossRefGoogle Scholar
  43. 43.
    H.S. Han, W. Jo, J. Rodel, I.K. Hong, W.P. Tai, J.S. Lee, J. Phys. Condens. Matter 24, 365901 (2012)CrossRefGoogle Scholar
  44. 44.
    W. Bai, D. Chen, Y. Huang, P. Zheng, J. Zhong, M. Ding, Y. Yuan, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 7669–7680 (2016)CrossRefGoogle Scholar
  45. 45.
    G. Dong, H. Fan, J. Shi, M. Li, W. Jo, J. Am. Ceram. Soc. 98, 1150–1155 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Ang, Z. Yu, Adv. Mater. 18, 103–106 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Kling, X. Tan, W. Jo, H.J. Kleebe, H. Fuess, J. Rödel, J. Am. Ceram. Soc. 93, 2452–2455 (2010)CrossRefGoogle Scholar
  48. 48.
    J. Shi, H. Fan, X. Liu, A.J. Bell, J. Am. Ceram. Soc. 97, 848–853 (2014)CrossRefGoogle Scholar
  49. 49.
    A. Furuta, K. Uchino, J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronics and InformationHangzhou Dianzi UniversityHangzhouChina
  2. 2.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
  3. 3.Functional Materials Research Laboratory, School of Materials Science & EngineeringTongji UniversityShanghaiChina

Personalised recommendations