Effect of extreme thermal shocking on the reliability of Sn50Pb49Sb1/Cu solder joint

  • Jianhao Wang
  • Songbai XueEmail author
  • Peng Zhang
  • Ziyi Wang
  • Peizhuo Zhai


The cosmic extreme temperature is deemed to be an enormous problem for the electronic devices and solder joints of on-orbit satellite. In this paper, an extreme thermal shocking test from 77 to 423 K was carried out to partly simulate the space temperature environment. The extreme thermal shocking effect on the microstructure, shear force and fracture behavior of Sn50Pb49Sb1/Cu solder joint was investigated to try to clarify the reliability evolution of solder joint. It was found that after the thermal shocking, Cu6Sn5 layer thickened significantly with the formation of micro-cracks. The columnar shape of Cu6Sn5 layer in as-soldered joint was changed to plane shape due to its excessive growth. The Cu3Sn layer formed and coarsened during the thermal shocking process, but no defects were observed. Owing to the growing interfacial layers and prolonging cracks, the shear force of solder joint was reduced with the increasing shock cycles. The fracture of solder joint was also transformed from solder-controlled mode to a mixed mode of solder and intermetallic compound, giving a different fracture location and lower ductility.



This project was supported by National Natural Science Foundation of China (Grant No. 51675269); Nanjing University of Aeronautics and Astronautics PhD short-term visiting scholar project (Grant No. 190908DF06) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    P. Voosen, Science 363, 439 (2019)Google Scholar
  2. 2.
    E. Venkatapathy, B. Laub, G.J. Hartman, J.O. Arnold, M.J. Wright, G.A. Allen, Adv. Space Res. 44, 138 (2009)CrossRefGoogle Scholar
  3. 3.
    G.L. Bennett, Energy Convers. Manage. 49, 382 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Wang, H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, J. Mater. Sci.: Mater. Electron. 28, 10230 (2017)Google Scholar
  6. 6.
    S.M.L. Nai, J. Wei, M. Gupta, J. Alloys Compd. 473, 100 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Xia, X. Xie, J. Alloys Compd. 454, 174 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, J. Mater. Sci.: Mater. Electron. 30, 4990 (2019)Google Scholar
  9. 9.
    R. Tian, C. Hang, Y. Tian, J. Feng, J. Alloys Compd. 777, 463 (2019)CrossRefGoogle Scholar
  10. 10.
    R. Tian, C. Hang, Y. Tian, L. Zhao, Mater. Sci. Eng., A 709, 125 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Yao, X. Yu, J. Mater. Sci.: Mater. Electron. 30, 867 (2019)Google Scholar
  12. 12.
    G. Zeng, S.D. McDonald, Q.F. Gu, K. Sweatman, K. Nogita, Philos. Mag. Lett. 94, 53 (2014)CrossRefGoogle Scholar
  13. 13.
    A.A. El-Daly, A.E. Hammad, A. Fawzy, A.D. Nasrallh, Mater. Des. 43, 40 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Zhong, W. Liu, C. Wang, X. Zhao, J.F.J.M. Caers, Mater. Sci. Eng., A 652, 264 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Ye, S. Xue, J. Luo, Y. Li, Mater. Des. 46, 816 (2013)CrossRefGoogle Scholar
  16. 16.
    D.-G. Kim, J.-W. Kim, J.-G. Lee, H. Mori, D.J. Quesnel, S.-B. Jung, J. Alloys Compd. 395, 80 (2005)CrossRefGoogle Scholar
  17. 17.
    J.-W. Yoon, H.-S. Chun, S.-B. Jung, Mater. Sci. Eng., A 483–484, 731 (2008)CrossRefGoogle Scholar
  18. 18.
    K.N. Tu, K. Zeng, Mater. Sci. Eng., R 34, 1 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Wang, S. Xue, J. Wang, J. Mater. Sci.: Mater. Electron. 28, 8246 (2017)Google Scholar
  20. 20.
    H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng., A 307, 42 (2001)CrossRefGoogle Scholar
  21. 21.
    Y. Qi, R. Lam, H.R. Ghorbani, P. Snugovsky, J.K. Spelt, Microelectron. Reliab. 46, 574 (2006)CrossRefGoogle Scholar
  22. 22.
    B.J. Lee, N.M. Hwang, H.M. Lee, Acta Mater. 45, 1867 (1997)CrossRefGoogle Scholar
  23. 23.
    J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater. 56, 1075 (2008)CrossRefGoogle Scholar
  24. 24.
    S. He, R. Gao, J. Li, Y.-A. Shen, H. Nishikawa, Mater. Chem. Phys. 239, 122309 (2020)CrossRefGoogle Scholar
  25. 25.
    Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, Y. Tang, J. Alloys Compd. 697, 104 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Gong, C. Liu, P.P. Conway, V.V. Silberschmidt, Acta Mater. 56, 4291 (2008)CrossRefGoogle Scholar
  27. 27.
    S.F. Choudhury, L. Ladani, J. Electron. Mater. 43, 996 (2014)CrossRefGoogle Scholar
  28. 28.
    D.T. Chu, Y.-C. Chu, J.-A. Lin, Y.-T. Chen, C.-C. Wang, Y.-F. Song, C.-C. Chiang, C. Chen, K.N. Tu, Microelectron. Reliab. 79, 32 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Wang, S. Xue, P. Zhang, P. Zhai, Y. Tao, J. Mater. Sci.: Mater. Electron. 30, 9065 (2019)Google Scholar
  30. 30.
    L. Yang, X. Shi, S. Quan, Mater. Res. Express 6, 076518 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Collin, D. Rowcliffe, Acta Mater. 48, 1655 (2000)CrossRefGoogle Scholar
  32. 32.
    O. Minho, G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, Microelectron. Eng. 120, 133 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Xu, J.H.L. Pang, F. Che, J. Electron. Mater. 37, 880 (2008)CrossRefGoogle Scholar
  34. 34.
    X. Deng, R.S. Sidhu, P. Johnson, N. Chawla, Metall. Mater. Trans. A 36, 55 (2005)CrossRefGoogle Scholar
  35. 35.
    P. Liu, P. Yao, J. Liu, J. Alloys Compd. 486, 474 (2009)CrossRefGoogle Scholar
  36. 36.
    X. Hu, Y. Li, Y. Liu, Y. Liu, Z. Min, Microelectron. Reliab. 54, 1575 (2014)CrossRefGoogle Scholar
  37. 37.
    K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)CrossRefGoogle Scholar
  38. 38.
    K.E. Yazzie, H.E. Fei, H. Jiang, N. Chawla, Acta Mater. 60, 4336 (2012)CrossRefGoogle Scholar
  39. 39.
    G.-Y. Jang, J.-W. Lee, J.-G. Duh, J. Electron. Mater. 33, 1103 (2004)CrossRefGoogle Scholar
  40. 40.
    X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Mater. Sci. Eng., A 673, 167 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations