Dielectric and piezoelectric properties of (K0.475Na0.495Li0.03) NbO3-0.003ZrO2/PVDF 0–3 composite reinforced with two types of nano-ZnO particles

  • Kun Yu
  • Shan HuEmail author
  • Junqin Tan
  • Wendi Yu


(K0.475Na0.495Li0.03) NbO3–0.003ZrO2 (KNNL-Z) ceramic was synthesized by the conventional solid-state reaction method. The purchased ZnO nanorods (denoted as ZnO1) and synthesized ZnO nanocakes (denoted as ZnO2) were used in the preparation of two types of composites fabricated by hot-pressing process using KNNL-Z ceramic powder, two kinds of ZnO nanoparticles, and PVDF polymer. The effects of the ZnO nanoparticles on the crystalline structures, morphology, thermal, dielectric, and piezoelectric properties of the composites were studied systemically. The KNNL-Z ceramic possesses a perovskite-type orthorhombic phase and the PVDF polymer mainly possesses α, β, and γ phases. Two kinds of ZnO all possess hexagonal wurtzite structures without any impurity phase. Interestingly, the incorporation of the ZnO nanoparticles has great impact on lattice constants and strain. In addition, the β phase content increases when the ZnO nanoparticles are added. From differential scanning calorimetry (DSC) measurements, it is found that the ZnO nanoparticles can enhance the thermal stability of composites. Moreover, the dielectric and piezoelectric properties are also found to be improved with the increase of ZnO content. Especially when 10 wt% ZnO2 is added, the dielectric constant reaches the value of 469.4 (100 Hz) at room temperature and the piezoelectric coefficient is 55 pC/N. After 30 days of aging test, it is obvious that all the composites present a good stability of piezoelectric property.



This work was supported by the Science and Technology Development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Supplementary material

10854_2019_2650_MOESM1_ESM.tif (386 kb)
Supplementary material 1 (TIFF 385 kb)
10854_2019_2650_MOESM2_ESM.tif (62.4 mb)
Supplementary material 2 (TIFF 63869 kb)
10854_2019_2650_MOESM3_ESM.pdf (1.1 mb)
Supplementary material 3 (PDF 1122 kb)


  1. 1.
    S. Murakami, D.W. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z.M. Fan, X.L. Tan, I.M. Reaney, J. Am. Ceram. Soc. 101, 5428–5442 (2018)CrossRefGoogle Scholar
  2. 2.
    Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Adv. Mater. 21, 2077–2082 (2009)CrossRefGoogle Scholar
  3. 3.
    D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, M.S. Cao, Chin. Phys. Lett. 25, 4410–4413 (2008)CrossRefGoogle Scholar
  4. 4.
    L.Y. Yang, X.Y. Li, E. Allahyarov, P.L. Taylor, Q.M. Zhang, L. Zhu, Polymer 54, 1709–1728 (2013)CrossRefGoogle Scholar
  5. 5.
    Q.G. Chi, L. Gao, X. Wang, Y. Chen, J.F. Dong, Y. Cui, Q.Q. Lei, AIP Adv. 5, 117103 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Express Polym. Lett. 4, 632–643 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. He, J.M. Hong, Adv. Mater. Process. 313, 1818–1821 (2011)Google Scholar
  8. 8.
    Y.H. Jin, N. Xia, R.A. Gerhardt, Nano Energy 30, 407–416 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Nano Energy 44, 456–467 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Weng, P.H. Ju, H.X. Li, L.W. Yan, L.Z. Liu, J. Wuhan Univ. Technol. 32, 958–962 (2017)CrossRefGoogle Scholar
  11. 11.
    K.Y. Shin, J.S. Lee, J. Jang, Nano Energy 22, 95–104 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4, 65–68 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Wu, X.Y. Huang, S.T. Li, P.K. Jiang, T. Toshikatsu, J. Phys. Chem. C 116, 24887–24895 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 2329–2337 (2019)CrossRefGoogle Scholar
  15. 15.
    A.K. Zak, W.C. Gan, W.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37(5), 1653–1660 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, J. Appl. Phys. 113, 034105 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Lusiola, A. Hussain, M.H. Kim, T. Graule, F. Clemens, Actuators 4, 99–113 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, L.T. Li, J. Eur. Ceram. Soc. 37, 2057–2065 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Kumari, A. Prasad, K. Prasad, J. Mater. Sci. Technol. 27, 213–217 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.C. Lee, T.K. Lee, J.H. Jan, J. Eur. Ceram. Soc. 31, 3145–3152 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Parangusan, D. Ponnamma, M.A. AlMaadeed, RSC Adv. 7, 50156–50165 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, C.H. Liu, J.B. Liu, J. Xiong, J.Y. Liu, K. Zhang, Y.D. Liu, M.Z. Peng, A.F. Yu, A.H. Zhang, Y. Zhang, Z.W. Wang, J.Y. Zhai, Z.L. Wang, ACS Appl. Mater. Interfaces 8, 1381–1387 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 5919–5932 (2019)CrossRefGoogle Scholar
  24. 24.
    V.V. Atuchin, C.C. Ziling, D.P. Shipilova, N.F. Beizel, Ferroelectrics 100, 261–269 (1989)CrossRefGoogle Scholar
  25. 25.
    A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 34, 769–772 (2008)CrossRefGoogle Scholar
  26. 26.
    C.J. Dias, D.K. DasGupta, IEEE Trans. Dielect. Electr. Insul. 3, 706–734 (1996)CrossRefGoogle Scholar
  27. 27.
    I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, H.M. Shanshool, Opt. Quant. Electron. 48, 149 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Greeshma, R. Balaji, S. Jayakumar, Ferroelectrics Lett. 40, 41–55 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Yu, P. Cebe, Polymer 50, 2133–2141 (2009)CrossRefGoogle Scholar
  30. 30.
    S.K. Ghosh, M.M. Alam, D. Mandal, RSC Adv. 4, 41886–41894 (2014)CrossRefGoogle Scholar
  31. 31.
    A.C. Lopes, S.A. Carabineiro, M.F. Pereira, G. Botelho, S. Lanceros-Mendez, ChemPhysChem 14, 1926–1933 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Martins, C. Caparros, R. Goncalves, P.M. Martins, M. Benelmekki, G. Botelho, S. Lanceros-Mendez, J. Phys. Chem. C 116, 15790–15794 (2012)CrossRefGoogle Scholar
  33. 33.
    V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, J. Phys. Chem. C 118, 15404–15411 (2014)CrossRefGoogle Scholar
  34. 34.
    K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, N.V. Kuratieva, N.V. Pervukhina, N.V. Surovtsev, Solid State Commun. 177, 16–19 (2014)CrossRefGoogle Scholar
  35. 35.
    J.B. Zhong, J.Z. Li, Z.H. Xiao, W. Hu, X.B. Zhou, X.W. Zheng, Mater. Lett. 91, 301–303 (2013)CrossRefGoogle Scholar
  36. 36.
    H.M. Moghaddam, H. Malkeshi, J. Mater. Sci. 27, 8807–8815 (2016)Google Scholar
  37. 37.
    X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99–104 (2003)CrossRefGoogle Scholar
  38. 38.
    J. Li, C.M. Zhao, K. Xia, X. Liu, D. Li, J. Han, Appl. Surf. Sci. 463, 626–634 (2019)CrossRefGoogle Scholar
  39. 39.
    A.P. Indolia, M.S. Gaur, J. Therm. Anal. Calorim. 113, 821–830 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Batool, F. Kanwal, M. Imran, T. Jamil, S.A. Siddiqi, Synth. Met. 161, 2753–2758 (2012)CrossRefGoogle Scholar
  41. 41.
    L.J. Fang, W. Wu, X.Y. Huang, J.L. He, P.K. Jiang, Compos. Sci. Technol. 107, 67–74 (2015)CrossRefGoogle Scholar
  42. 42.
    W. Gao, B. Zhou, Y.H. Liu, X.Y. Ma, Y. Liu, Z.C. Wang, Y.C. Zhu, Polym. Int. 62, 432–438 (2013)CrossRefGoogle Scholar
  43. 43.
    A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, J. Phys. D 43, 345401 (2010)CrossRefGoogle Scholar
  44. 44.
    A.S. Bhatt, D.K. Bhat, M.S. Santosh, J. Appl. Polym. Sci. 119, 968–972 (2011)CrossRefGoogle Scholar
  45. 45.
    Z.M. He, J. Ma, R.F. Zhang, T. Li, J. Eur. Ceram. Soc. 23, 1943–1947 (2003)CrossRefGoogle Scholar
  46. 46.
    E. Atamanik, V. Thangadurai, J. Phys. Chem. C 113, 4648–4653 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, M. Prasad, World J. Condens. Matter Phys. 2, 257–266 (2012)CrossRefGoogle Scholar
  48. 48.
    Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, Z.W. Guan, J. Alloy. Compd. 696, 746–753 (2017)CrossRefGoogle Scholar
  49. 49.
    Y. Zhou, J.C. Zhang, L. Li, Y.L. Su, J.R. Cheng, S.X. Cao, J. Alloy. Compd. 484, 535–539 (2009)CrossRefGoogle Scholar
  50. 50.
    K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, S. Sagadevan, J. Mater. Sci. 27, 6457–6463 (2016)Google Scholar
  51. 51.
    W.Y. Zhou, Z.J. Wang, L.N. Dong, X.Z. Sui, Q.G. Chen, Compos. Part A 79, 183–191 (2015)CrossRefGoogle Scholar
  52. 52.
    J.H. Choi, J.S. Seo, S.N. Cha, H.J. Kim, S.M. Kim, Y.J. Park, S.W. Kim, J.B. Yoo, J.M. Kim, Jpn. J. Appl. Phys. 50, 1 (2011)Google Scholar
  53. 53.
    O.J. Cheong, J.S. Lee, J.H. Kim, J. Jang, Small 12, 2567–2574 (2016)CrossRefGoogle Scholar
  54. 54.
    S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, C.C. Wang, Mater. Lett. 211, 114–117 (2018)CrossRefGoogle Scholar
  55. 55.
    I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, N.A. Hakeem, Phys. B 405, 94–98 (2010)CrossRefGoogle Scholar
  56. 56.
    S. Adireddy, V.S. Puli, T.J. Lou, R. Elupula, S.C. Sklare, B.C. Riggs, D.B. Chrisey, J. Sol-Gel Sci. Technol. 73, 641–646 (2015)CrossRefGoogle Scholar
  57. 57.
    S.H. Liu, J.W. Zhai, RSC Adv. 4, 40973–40979 (2014)CrossRefGoogle Scholar
  58. 58.
    Z. Wang, T. Wang, C. Wang, Y.J. Xiao, P.P. Jing, Y.F. Cui, Y.P. Pu, ACS Appl. Mater. Interfaces 9, 29130–29139 (2017)CrossRefGoogle Scholar
  59. 59.
    B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510–519 (2014)CrossRefGoogle Scholar
  60. 60.
    J.G.L. Peng, J.T. Zeng, L.Y. Zheng, G.R. Li, N. Yaacoub, M. Tabellout, A. Gibaud, A. Kassiba, J. Alloy. Compd. 796, 221–228 (2019)CrossRefGoogle Scholar
  61. 61.
    Q.Q. Zhang, F. Gao, G.X. Hu, C.C. Zhang, M. Wang, M.J. Qin, L. Wang, Compos. Sci. Technol. 118, 94–100 (2015)CrossRefGoogle Scholar
  62. 62.
    K. Yu, S. Hu, W.D. Yu, J.Q. Tan, Opt. Quant. Electron. 51, 336 (2019)CrossRefGoogle Scholar
  63. 63.
    S. Paria, S.K. Karan, R. Bera, A.K. Das, A. Maitra, B.B. Khatua, Ind. Eng. Chem. Res. 55, 10671–10680 (2016)CrossRefGoogle Scholar
  64. 64.
    C.L. Hsu, I.L. Su, T.J. Hsueh, RSC Adv. 5, 34019–34026 (2015)CrossRefGoogle Scholar
  65. 65.
    X.L. Yu, Y.D. Hou, M.P. Zheng, J. Yan, W.X. Jia, M.K. Zhu, J. Am. Ceram. Soc. 102, 275–284 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesHongshan District, WuhanPeople’s Republic of China
  2. 2.Engineering Research Center of Nano, Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations