Dielectric and piezoelectric properties of (K0.475Na0.495Li0.03) NbO3-0.003ZrO2/PVDF 0–3 composite reinforced with two types of nano-ZnO particles
- 3 Downloads
Abstract
(K0.475Na0.495Li0.03) NbO3–0.003ZrO2 (KNNL-Z) ceramic was synthesized by the conventional solid-state reaction method. The purchased ZnO nanorods (denoted as ZnO1) and synthesized ZnO nanocakes (denoted as ZnO2) were used in the preparation of two types of composites fabricated by hot-pressing process using KNNL-Z ceramic powder, two kinds of ZnO nanoparticles, and PVDF polymer. The effects of the ZnO nanoparticles on the crystalline structures, morphology, thermal, dielectric, and piezoelectric properties of the composites were studied systemically. The KNNL-Z ceramic possesses a perovskite-type orthorhombic phase and the PVDF polymer mainly possesses α, β, and γ phases. Two kinds of ZnO all possess hexagonal wurtzite structures without any impurity phase. Interestingly, the incorporation of the ZnO nanoparticles has great impact on lattice constants and strain. In addition, the β phase content increases when the ZnO nanoparticles are added. From differential scanning calorimetry (DSC) measurements, it is found that the ZnO nanoparticles can enhance the thermal stability of composites. Moreover, the dielectric and piezoelectric properties are also found to be improved with the increase of ZnO content. Especially when 10 wt% ZnO2 is added, the dielectric constant reaches the value of 469.4 (100 Hz) at room temperature and the piezoelectric coefficient is 55 pC/N. After 30 days of aging test, it is obvious that all the composites present a good stability of piezoelectric property.
Notes
Funding
This work was supported by the Science and Technology Development Fund of China University of Geosciences (Grant No. 110-KH14J130).
Compliance with ethical standards
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this article.
Supplementary material
References
- 1.S. Murakami, D.W. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z.M. Fan, X.L. Tan, I.M. Reaney, J. Am. Ceram. Soc. 101, 5428–5442 (2018)CrossRefGoogle Scholar
- 2.Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Adv. Mater. 21, 2077–2082 (2009)CrossRefGoogle Scholar
- 3.D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, M.S. Cao, Chin. Phys. Lett. 25, 4410–4413 (2008)CrossRefGoogle Scholar
- 4.L.Y. Yang, X.Y. Li, E. Allahyarov, P.L. Taylor, Q.M. Zhang, L. Zhu, Polymer 54, 1709–1728 (2013)CrossRefGoogle Scholar
- 5.Q.G. Chi, L. Gao, X. Wang, Y. Chen, J.F. Dong, Y. Cui, Q.Q. Lei, AIP Adv. 5, 117103 (2015)CrossRefGoogle Scholar
- 6.P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Express Polym. Lett. 4, 632–643 (2010)CrossRefGoogle Scholar
- 7.Y. He, J.M. Hong, Adv. Mater. Process. 313, 1818–1821 (2011)Google Scholar
- 8.Y.H. Jin, N. Xia, R.A. Gerhardt, Nano Energy 30, 407–416 (2016)CrossRefGoogle Scholar
- 9.P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Nano Energy 44, 456–467 (2018)CrossRefGoogle Scholar
- 10.L. Weng, P.H. Ju, H.X. Li, L.W. Yan, L.Z. Liu, J. Wuhan Univ. Technol. 32, 958–962 (2017)CrossRefGoogle Scholar
- 11.K.Y. Shin, J.S. Lee, J. Jang, Nano Energy 22, 95–104 (2016)CrossRefGoogle Scholar
- 12.Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4, 65–68 (2012)CrossRefGoogle Scholar
- 13.W. Wu, X.Y. Huang, S.T. Li, P.K. Jiang, T. Toshikatsu, J. Phys. Chem. C 116, 24887–24895 (2012)CrossRefGoogle Scholar
- 14.K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 2329–2337 (2019)CrossRefGoogle Scholar
- 15.A.K. Zak, W.C. Gan, W.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37(5), 1653–1660 (2011)CrossRefGoogle Scholar
- 16.K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, J. Appl. Phys. 113, 034105 (2013)CrossRefGoogle Scholar
- 17.T. Lusiola, A. Hussain, M.H. Kim, T. Graule, F. Clemens, Actuators 4, 99–113 (2015)CrossRefGoogle Scholar
- 18.Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, L.T. Li, J. Eur. Ceram. Soc. 37, 2057–2065 (2017)CrossRefGoogle Scholar
- 19.K. Kumari, A. Prasad, K. Prasad, J. Mater. Sci. Technol. 27, 213–217 (2011)CrossRefGoogle Scholar
- 20.Y.C. Lee, T.K. Lee, J.H. Jan, J. Eur. Ceram. Soc. 31, 3145–3152 (2011)CrossRefGoogle Scholar
- 21.H. Parangusan, D. Ponnamma, M.A. AlMaadeed, RSC Adv. 7, 50156–50165 (2017)CrossRefGoogle Scholar
- 22.Y. Zhang, C.H. Liu, J.B. Liu, J. Xiong, J.Y. Liu, K. Zhang, Y.D. Liu, M.Z. Peng, A.F. Yu, A.H. Zhang, Y. Zhang, Z.W. Wang, J.Y. Zhai, Z.L. Wang, ACS Appl. Mater. Interfaces 8, 1381–1387 (2016)CrossRefGoogle Scholar
- 23.K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 5919–5932 (2019)CrossRefGoogle Scholar
- 24.V.V. Atuchin, C.C. Ziling, D.P. Shipilova, N.F. Beizel, Ferroelectrics 100, 261–269 (1989)CrossRefGoogle Scholar
- 25.A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 34, 769–772 (2008)CrossRefGoogle Scholar
- 26.C.J. Dias, D.K. DasGupta, IEEE Trans. Dielect. Electr. Insul. 3, 706–734 (1996)CrossRefGoogle Scholar
- 27.I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, H.M. Shanshool, Opt. Quant. Electron. 48, 149 (2016)CrossRefGoogle Scholar
- 28.T. Greeshma, R. Balaji, S. Jayakumar, Ferroelectrics Lett. 40, 41–55 (2013)CrossRefGoogle Scholar
- 29.L. Yu, P. Cebe, Polymer 50, 2133–2141 (2009)CrossRefGoogle Scholar
- 30.S.K. Ghosh, M.M. Alam, D. Mandal, RSC Adv. 4, 41886–41894 (2014)CrossRefGoogle Scholar
- 31.A.C. Lopes, S.A. Carabineiro, M.F. Pereira, G. Botelho, S. Lanceros-Mendez, ChemPhysChem 14, 1926–1933 (2013)CrossRefGoogle Scholar
- 32.P. Martins, C. Caparros, R. Goncalves, P.M. Martins, M. Benelmekki, G. Botelho, S. Lanceros-Mendez, J. Phys. Chem. C 116, 15790–15794 (2012)CrossRefGoogle Scholar
- 33.V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, J. Phys. Chem. C 118, 15404–15411 (2014)CrossRefGoogle Scholar
- 34.K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, N.V. Kuratieva, N.V. Pervukhina, N.V. Surovtsev, Solid State Commun. 177, 16–19 (2014)CrossRefGoogle Scholar
- 35.J.B. Zhong, J.Z. Li, Z.H. Xiao, W. Hu, X.B. Zhou, X.W. Zheng, Mater. Lett. 91, 301–303 (2013)CrossRefGoogle Scholar
- 36.H.M. Moghaddam, H. Malkeshi, J. Mater. Sci. 27, 8807–8815 (2016)Google Scholar
- 37.X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99–104 (2003)CrossRefGoogle Scholar
- 38.J. Li, C.M. Zhao, K. Xia, X. Liu, D. Li, J. Han, Appl. Surf. Sci. 463, 626–634 (2019)CrossRefGoogle Scholar
- 39.A.P. Indolia, M.S. Gaur, J. Therm. Anal. Calorim. 113, 821–830 (2013)CrossRefGoogle Scholar
- 40.A. Batool, F. Kanwal, M. Imran, T. Jamil, S.A. Siddiqi, Synth. Met. 161, 2753–2758 (2012)CrossRefGoogle Scholar
- 41.L.J. Fang, W. Wu, X.Y. Huang, J.L. He, P.K. Jiang, Compos. Sci. Technol. 107, 67–74 (2015)CrossRefGoogle Scholar
- 42.W. Gao, B. Zhou, Y.H. Liu, X.Y. Ma, Y. Liu, Z.C. Wang, Y.C. Zhu, Polym. Int. 62, 432–438 (2013)CrossRefGoogle Scholar
- 43.A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, J. Phys. D 43, 345401 (2010)CrossRefGoogle Scholar
- 44.A.S. Bhatt, D.K. Bhat, M.S. Santosh, J. Appl. Polym. Sci. 119, 968–972 (2011)CrossRefGoogle Scholar
- 45.Z.M. He, J. Ma, R.F. Zhang, T. Li, J. Eur. Ceram. Soc. 23, 1943–1947 (2003)CrossRefGoogle Scholar
- 46.E. Atamanik, V. Thangadurai, J. Phys. Chem. C 113, 4648–4653 (2009)CrossRefGoogle Scholar
- 47.A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, M. Prasad, World J. Condens. Matter Phys. 2, 257–266 (2012)CrossRefGoogle Scholar
- 48.Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, Z.W. Guan, J. Alloy. Compd. 696, 746–753 (2017)CrossRefGoogle Scholar
- 49.Y. Zhou, J.C. Zhang, L. Li, Y.L. Su, J.R. Cheng, S.X. Cao, J. Alloy. Compd. 484, 535–539 (2009)CrossRefGoogle Scholar
- 50.K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, S. Sagadevan, J. Mater. Sci. 27, 6457–6463 (2016)Google Scholar
- 51.W.Y. Zhou, Z.J. Wang, L.N. Dong, X.Z. Sui, Q.G. Chen, Compos. Part A 79, 183–191 (2015)CrossRefGoogle Scholar
- 52.J.H. Choi, J.S. Seo, S.N. Cha, H.J. Kim, S.M. Kim, Y.J. Park, S.W. Kim, J.B. Yoo, J.M. Kim, Jpn. J. Appl. Phys. 50, 1 (2011)Google Scholar
- 53.O.J. Cheong, J.S. Lee, J.H. Kim, J. Jang, Small 12, 2567–2574 (2016)CrossRefGoogle Scholar
- 54.S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, C.C. Wang, Mater. Lett. 211, 114–117 (2018)CrossRefGoogle Scholar
- 55.I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, N.A. Hakeem, Phys. B 405, 94–98 (2010)CrossRefGoogle Scholar
- 56.S. Adireddy, V.S. Puli, T.J. Lou, R. Elupula, S.C. Sklare, B.C. Riggs, D.B. Chrisey, J. Sol-Gel Sci. Technol. 73, 641–646 (2015)CrossRefGoogle Scholar
- 57.S.H. Liu, J.W. Zhai, RSC Adv. 4, 40973–40979 (2014)CrossRefGoogle Scholar
- 58.Z. Wang, T. Wang, C. Wang, Y.J. Xiao, P.P. Jing, Y.F. Cui, Y.P. Pu, ACS Appl. Mater. Interfaces 9, 29130–29139 (2017)CrossRefGoogle Scholar
- 59.B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510–519 (2014)CrossRefGoogle Scholar
- 60.J.G.L. Peng, J.T. Zeng, L.Y. Zheng, G.R. Li, N. Yaacoub, M. Tabellout, A. Gibaud, A. Kassiba, J. Alloy. Compd. 796, 221–228 (2019)CrossRefGoogle Scholar
- 61.Q.Q. Zhang, F. Gao, G.X. Hu, C.C. Zhang, M. Wang, M.J. Qin, L. Wang, Compos. Sci. Technol. 118, 94–100 (2015)CrossRefGoogle Scholar
- 62.K. Yu, S. Hu, W.D. Yu, J.Q. Tan, Opt. Quant. Electron. 51, 336 (2019)CrossRefGoogle Scholar
- 63.S. Paria, S.K. Karan, R. Bera, A.K. Das, A. Maitra, B.B. Khatua, Ind. Eng. Chem. Res. 55, 10671–10680 (2016)CrossRefGoogle Scholar
- 64.C.L. Hsu, I.L. Su, T.J. Hsueh, RSC Adv. 5, 34019–34026 (2015)CrossRefGoogle Scholar
- 65.X.L. Yu, Y.D. Hou, M.P. Zheng, J. Yan, W.X. Jia, M.K. Zhu, J. Am. Ceram. Soc. 102, 275–284 (2019)CrossRefGoogle Scholar