Advertisement

Facile synthesis of MnO2@NiCo2O4 core–shell nanowires as good performance asymmetric supercapacitor

  • Xiuhua WangEmail author
  • Yuan Yang
  • Peng He
  • Fuqiang Zhang
  • Jiping Tang
  • Zeyu Guo
  • Ronghui QueEmail author
Article
  • 8 Downloads

Abstract

Hierarchical MnO2@NiCo2O4 core–shell nanostructures are well fabricated via a simple two-step hydrothermal process. The MnO2@NiCo2O4 core–shell nanostructures materials electrode presents a high capacitance of 684 F g−1 at 2 A g−1 current density, 40 times higher than that of the single MnO2 nanowires electrode. And 87.4% retain is approached even at a high current density of 15 A g−1, showing satisfactory rate capability. Furthermore, the theoretical analysis reveals the surface capacitance contribution is predominant in the capacitive contribution. The asymmetric supercapacitor assembled with MnO2@NiCo2O4 exhibited a maximum energy density of 35.6 Wh kg−1 and a maximum power density of 745.1 W kg−1. After 7000 charge–discharge cycling at a current density of 4 A g−1, it still can maintain 90% of the initial capacitance. These results suggest that MnO2@NiCo2O4 is the promising candidate of supercapacitors.

Notes

Acknowledgements

The financial support from the National Natural Science Foundation of China (Nos. 21301007 and 21301006) and Anhui Normal University Nurturing Project (No. 2016XJJ001) are acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_2649_MOESM1_ESM.docx (6.6 mb)
Supplementary material 1 (DOCX 6745 kb)

References

  1. 1.
    L.-F. Chen, Y. Feng, H.-W. Liang, Z.-Y. Wu, S.-H. Yu, Three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv Energy Mater 7, 201700826 (2017)Google Scholar
  2. 2.
    M. Chen, Y. Zhang, L. Xing, Y. Liao, Y. Qiu, S. Yang, W. Li, Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage. Adv. Mater. 29, 201607015 (2017)Google Scholar
  3. 3.
    H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 201702093 (2017)Google Scholar
  4. 4.
    Y. Chen, K. Cai, C. Liu, H. Song, X. Yang, High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv Energy Mater 7, 201701247 (2017)Google Scholar
  5. 5.
    W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S.J.R. Tan, X. Wang, Y. Liu, D. Geng, Y. Bao, J. Chen, K.P. Loh, Two-dimensional polymer synthesized via solid-state polymerization for high-performance supercapacitors. ACS Nano 12, 852–860 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Jia, Y. Cai, X. Zheng, J. Lin, H. Liang, J. Qi, J. Cao, J. Feng, W. Fei, Mesostructured carbon nanotube-on-MnO2 nanosheet composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 10, 38963–38969 (2018)CrossRefGoogle Scholar
  7. 7.
    Z. Lu, J. Foroughi, C. Wang, H. Long, G.G. Wallace, Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv Energy Mater 8, 201702047 (2018)Google Scholar
  8. 8.
    M. Zou, W. Zhao, H. Wu, H. Zhang, W. Xu, L. Yang, S. Wu, Y. Wang, Y. Chen, L. Xu, A. Cao, Single carbon fibers with a macroscopic-thickness, 3D highly porous carbon nanotube coating. Adv. Mater. 30, 201704419 (2018)Google Scholar
  9. 9.
    B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 29, 201605902 (2017)Google Scholar
  10. 10.
    K. Qiu, M. Lu, Y. Luo, X. Du, Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. J Mater Chem A 5, 5820–5828 (2017)CrossRefGoogle Scholar
  11. 11.
    R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293–5308 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Zhou, Y. He, Q. Xu, Q.E. Zhang, A.A. Zhou, Z. Lu, L.-K. Yang, Y. Jiang, D. Ge, X.Y. Liu, H. Bai, A Hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12, 5888–5894 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Shu, Y. Chao, S. Chou, C. Wang, T. Zheng, S. Gambhir, G.G. Wallace, “Tandem” strategy to fabricate flexible graphene/polypyrrole nanofiber film using the surfactant-exfoliated graphene for supercapacitors. ACS Appl. Mater. Interfaces. 10, 22031–22041 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Dastan, A. Banpurkar, Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. - Mater. Electron. 28, 3851–3859 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci. 28, 7784–7796 (2017)Google Scholar
  16. 16.
    D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. 27, 12291–12296 (2016)Google Scholar
  17. 17.
    X.-T. Yin, W.-D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.-Y. Wu, D. Dastan, H. Garmestani, Z. Shi, S. Talu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci. 30, 14687–14694 (2019)Google Scholar
  18. 18.
    X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. A 125, 105521 (2019)CrossRefGoogle Scholar
  19. 19.
    D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol-gel method. J. Mater. Sci. 25, 3473–3479 (2014)Google Scholar
  20. 20.
    J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li, G. Cao, A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J Mater Chem A 6, 16094–16100 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Wang, F. Wei, Y. Sui, J. Qi, Y. He, Q. Meng, A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceram. Int. 45, 12558–12562 (2019)CrossRefGoogle Scholar
  22. 22.
    P. Balasubramanian, M. Annalakshmi, S.-M. Chen, T. Sathesh, T.-K. Peng, T. Balamurugan, Facile solvothermal preparation of Mn2CuO4 microspheres: excellent electrocatalyst for real-time detection of H2O2 released from live cells. ACS Appl. Mater. Interfaces. 10, 43543–43551 (2018)CrossRefGoogle Scholar
  23. 23.
    X.L. Guo, M. Kuang, F. Dong, Y.X. Zhang, Monodispersed plum candy-like MnO2 nanosheets-decorated NiO nanostructures for supercapacitors. Ceram. Int. 42, 7787–7792 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, Structural directed growth of ultrathin parallel birnessite on beta-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12, 1033–1042 (2018)CrossRefGoogle Scholar
  25. 25.
    X. Meng, L. Lu, C. Sun, Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces. 10, 16474–16481 (2018)CrossRefGoogle Scholar
  26. 26.
    Qi Gao, Jinxing Wang, Bin Ke, Jingfeng Wang, Yanqiong Li, Fe doped δ-MnO2 anoneedles as advanced supercapacitor electrodes. Ceram. Int. 44, 18770–18775 (2018)CrossRefGoogle Scholar
  27. 27.
    H.-S. Nam, J.-K. Yoon, J.M. Ko, J.-D. Kim, Electrochemical capacitors of flower-like and nanowire structured MnO2 by a sonochemical method. Mater. Chem. Phys. 123, 331–336 (2010)CrossRefGoogle Scholar
  28. 28.
    Y.-J. Yang, E.-J. Liu, L.-M. Li, Z.-Z. Huang, H.-J. Shen, X.-X. Xiang, J Nanostructured amorphous MnO2 prepared by reaction of KMnO4 with triethanolamine. J Alloys Compd 505, 555–559 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Kim, H.J. Jung, J.C. Kim, K.-S. Lee, S.S. Park, V.P. Dravid, K. He, H.Y. Jeong, In situ observation of resistive switching in an asymmetric graphene oxide bilayer structure. ACS Nano 12, 7335–7342 (2018)CrossRefGoogle Scholar
  30. 30.
    X. Lu, C. Shen, Z. Zhang, E. Barrios, L. Zhai, Core-shell composite fibers for high-performance flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 10, 4041–4049 (2018)CrossRefGoogle Scholar
  31. 31.
    X. Wang, H. Xia, J. Gao, B. Shi, Y. Fang, M. Shao, Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core-shell nanostructure and porous carbon. J Mater Chem A 4, 18181–18187 (2016)CrossRefGoogle Scholar
  32. 32.
    D.S. Sun, Y.H. Li, Z.Y. Wang, X.P. Cheng, S. Jaffer, Y.F. Zhang, Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors. J Mater Chem A 4, 5198–5204 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Sun, S. Wang, S. Li, Y. Li, Y. Zhang, J. Chen, Z. Zhang, S. Fang, P. Wang, Asymmetric supercapacitors based on a NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density. J Mater Chem A 4, 18646–18653 (2016)CrossRefGoogle Scholar
  34. 34.
    F.-X. Ma, L. Yu, C.-Y. Xu, X.W. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 9, 862–866 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, L. Ma, M.Y. Gan, M.H. Ye, X.R. Li, Y.F. Zhai, F.B. Yan, F.F. Cao, Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl. Surf. Sci. 444, 1–9 (2018)CrossRefGoogle Scholar
  36. 36.
    S.W. Zhang, B.S. Yin, C. Liu, Z.B. Wang, D.M. Gu, Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. Chem Engin J 312, 296–305 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Wang, B. Shi, Y. Fang, F. Rong, F. Huang, R. Que, M. Shao, High capacitance and rate capability of a Ni3S2@CdS core-shell nanostructure supercapacitor. J Mater Chem A 5, 7165–7172 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Han, Y. Dou, J. Zhao, M. Wei, D.G. Evans, X. Duan, Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 9, 98–106 (2013)CrossRefGoogle Scholar
  39. 39.
    D. Zhao, X. Wu, C. Guo, Hybrid MnO2@NiCo2O4 nanosheets for high performance asymmetric supercapacitors. Inorg Chim Front 5, 1378–1385 (2018)CrossRefGoogle Scholar
  40. 40.
    Z. Ma, G. Shao, Y. Fan, M. Feng, D. Shen, H. Wang, Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable alpha-MnO2@NiCo2O4 core shell heterostructure and 3D-nanocage N-doped porous carbon. Acs Sustain Chem Eng 5, 4856–4868 (2017)CrossRefGoogle Scholar
  41. 41.
    L. Su, L. Hou, S. Di, J. Zhang, X. Qin, Plumage-like MnO2@NiCo2O4 core-shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”. Ionics 24, 3227–3235 (2018)CrossRefGoogle Scholar
  42. 42.
    L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao, J. Jiang, Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim. Acta 182, 361–367 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Dang, C. Dong, Z. Zhang, G. Chen, Y. Wang, H. Guan, Self-grown MnO2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes. Electrochim. Acta 217, 16–23 (2016)CrossRefGoogle Scholar
  44. 44.
    L. Wang, Y. Ouyang, X. Jiao, X. Xia, W. Lei, Q. Hao, Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem Engin J 334, 1–9 (2018)CrossRefGoogle Scholar
  45. 45.
    D. Wu, S. Xu, M. Li, C. Zhang, Y. Zhu, Y. Xu, W. Zhang, R. Huang, R. Qi, L. Wang, P.K. Chu, Hybrid MnO2/C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. J Mater Chem A 3, 16695–16707 (2015)CrossRefGoogle Scholar
  46. 46.
    N. Zhang, C. Fu, D. Liu, Y. Li, H. Zhou, Y. Kuang, Three-dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor. Electrochim. Acta 210, 804–811 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Zhu, H. Zhang, P. Chen, L.-H. Nie, C.-H. Li, S.-K. Li, Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin beta-MnO2 nanobelts for high performance supercapacitors. J Mater Chem A 3, 1540–1548 (2015)CrossRefGoogle Scholar
  48. 48.
    X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12, 3048–3058 (2016)CrossRefGoogle Scholar
  49. 49.
    H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.E. Lindquist, J Phys Chem B 101, 7717–7722 (1997)CrossRefGoogle Scholar
  50. 50.
    J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)CrossRefGoogle Scholar
  51. 51.
    M. Sathiya, A.S. Prakash, K. Ramesha, J.M. Tarascon, A.K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133, 16291–16299 (2011)CrossRefGoogle Scholar
  52. 52.
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  53. 53.
    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuChina

Personalised recommendations