Electrochromic properties of UV-colored WO3 thin film deposited by thermionic vacuum arc
- 10 Downloads
Abstract
Tungsten trioxide (WO3) is an efficient material for electrochromic (EC) application due to its better coloration efficiency in visible region. In this study, WO3 nanolayer thin films were deposited onto indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) substrate by thermionic vacuum arc technique to obtain the UV-colored EC device. The coloration efficiencies for UV region were calculated to be 30 and 14 cm2/C onto WO3/ITO- and WO3/FTO-coated glass for 378 nm, respectively. Reversibility values for the EC structure were obtained as 53 and 51% for the WO3/ITO and WO3/FTO, respectively. According to X-ray diffractometer (XRD) analysis, monoclinic and hexagonal phases for WO3 nanolayer were detected. The band gap of WO3 thin film was found as 3.08 eV. Morphological investigations of WO3 deposited onto glass show that there is a longitudinal growth on the surface.
Notes
Acknowledgements
This research activity was supported by Scientific Research Commission of Eskisehir Osmangazi University (Grant Number is 201719041).
References
- 1.V.R. Buch, A.K. Chawla, S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today 3(6), 1429–1437 (2016)Google Scholar
- 2.M. Jayachandran, R. Vijayalakshmi, V. Ravindran, C. Sanjeeviraja, Review on WO3 thin films: materials properties, preparation techniques and electrochromic devices. Trans. SAEST 40(2), 42–61 (2005)Google Scholar
- 3.Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J. Mater. Sci.: Mater. Electron. 26(11), 8404–8412 (2015)Google Scholar
- 4.T. Ali, Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci.: Mater. Electron. 29(2), 1209–1215 (2018)Google Scholar
- 5.A.A. Yadav, Y.M. Hunge, V.L. Mathe, S.B. Kulkarni, Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination. J. Mater. Sci.: Mater. Electron. 29(17), 15069–15073 (2018)Google Scholar
- 6.C.O. Avellaneda, L.O.S. Bulhões, Kinetics and thermodynamic behavior of WO3 and WO3: P thin films. Sol. Energy Mater. Sol. Cells 90(4), 395–401 (2006)CrossRefGoogle Scholar
- 7.T. Kuroki, Y. Matsushima, H. Unuma, Electrochromic response of WO3 and WO3-TiO2 thin films prepared from water-soluble precursors and a block copolymer template. J. Asian Ceram. Soc. 4(4), 367–370 (2016)CrossRefGoogle Scholar
- 8.Y.M. Hunge, Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram. Int. 43(13), 10089–10096 (2017)CrossRefGoogle Scholar
- 9.Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
- 10.Y.E. Firat, A. Peksoz, Electrochemical synthesis of polyaniline/inorganic salt binary nanofiber thin films for electrochromic applications. J. Mater. Sci.: Mater. Electron. 28(4), 3515–3522 (2017)Google Scholar
- 11.Y.E. Firat, A. Peksoz, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochim. Acta 295, 645–654 (2019)CrossRefGoogle Scholar
- 12.S.K. Deb, A novel electrophotographic system. Appl. Opt. 8(101), 192–195 (1969)CrossRefGoogle Scholar
- 13.T. Stapinski, K. Marszalek, B. Swatowska, A. Stanco, Characterisation and application of WO3 films for electrochromic devices. In Electron Technology Conference 2013 (Vol. 8902, p. 890224, 2013). International Society for Optics and PhotonicsGoogle Scholar
- 14.E. Şilik, S. Pat, S. Özen, R. Mohammadigharehbagh, H.H. Yudar, C. Musaoğlu, Ş. Korkmaz, Electrochromic properties of TiO2 thin films grown by thermionic vacuum arc method. Thin Solid Films 640, 27–32 (2017)CrossRefGoogle Scholar
- 15.K.J. Patel, M.S. Desai, C.J. Panchal, H.N. Deota, U.B. Trivedi, All-solid-thin film electrochromic devices consisting of layers ITO/NiO/ZrO2/WO3/ITO. J. Nano-electron. Phys. 5(2), 02023 (2013)Google Scholar
- 16.M.H. Kim, H.W. Choi, K.H. Kim, Thickness dependence of WO3-x thin films for electrochromic device application. Mol. Cryst. Liq. Cryst. 598(1), 54–61 (2014)CrossRefGoogle Scholar
- 17.P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys. 77(1), 117–133 (2003)CrossRefGoogle Scholar
- 18.M.C. Rao, Structure and properties of WO3 thin films for electrochromic device application. J. Non-oxide Glasses 5, 1–8 (2013)Google Scholar
- 19.I. Valyukh, S. Green, H. Arwin, G.A. Niklasson, E. Wäckelgård, C.G. Granqvist, Spectroscopic ellipsometry characterization of electrochromic tungsten oxide and nickel oxide thin films made by sputter deposition. Sol. Energy Mater. Sol. Cells 94(5), 724–732 (2010)CrossRefGoogle Scholar
- 20.H.H. Lu, Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering. J. Alloy Compd. 465(1–2), 429–435 (2008)CrossRefGoogle Scholar
- 21.C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens. Actuators B 144(1), 280–288 (2010)CrossRefGoogle Scholar
- 22.S. Balaji, Y. Djaoued, A.S. Albert, R. Brüning, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21(11), 3940–3948 (2011)CrossRefGoogle Scholar
- 23.R. Sivakumar, K. Shanthakumari, A. Thayumanavan, M. Jayachandran, C. Sanjeeviraja, Coloration and bleaching mechanism of tungsten oxide thin films in different electrolytes. Surf. Eng. 23(5), 373–379 (2007)CrossRefGoogle Scholar
- 24.M.F. Al-Kuhaili, A.H. Al-Aswad, S.M.A. Durrani, I.A. Bakhtiari, Transparent heat mirrors based on tungsten oxide–silver multilayer structures. Sol. Energy 83(9), 1571–1577 (2009)CrossRefGoogle Scholar
- 25.J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu, Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Sol. Energy Mater. Sol. Cells 95(8), 2107–2112 (2011)CrossRefGoogle Scholar
- 26.A. Novinrooz, M. Sharbatdaran, H. Noorkojouri, Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method. Open Phys. 3(3), 456–466 (2005)CrossRefGoogle Scholar
- 27.C.C. Chen, Characterization of porous WO3 electrochromic device by electrochemical impedance spectroscopy. J. Nanomater. (2013). https://doi.org/10.1155/2013/785023 CrossRefGoogle Scholar
- 28.Z. Jiao, J. Wang, L. Ke, X. Liu, H.V. Demir, M.F. Yang, X.W. Sun, Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochim. Acta 63, 153–160 (2012)CrossRefGoogle Scholar
- 29.S. Elmas, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, U. Demirkol, S. Özen, Ş. Korkmaz, Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B 557, 27–33 (2019)CrossRefGoogle Scholar
- 30.M. Özgür, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, U. Demirkol, S. Elmas, S. Özen, Ş. Korkmaz, Al doped ZnO thin film deposition by thermionic vacuum arc. J. Mater. Sci.: Mater. Electron. 30(1), 624–630 (2019)Google Scholar
- 31.Y.M. Hunge, A.A. Yadav, V.L. Mathe, Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 731, 136582 (2019)CrossRefGoogle Scholar
- 32.H. Najafi-Ashtiani, A. Bahari, S. Gholipour, S. Hoseinzadeh, Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys. A 124(1), 24 (2018)CrossRefGoogle Scholar
- 33.H. Najafi-Ashtiani, A. Bahari, Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3. Opt. Mater. 58, 210–218 (2016)CrossRefGoogle Scholar
- 34.A.V. Kadam, S.B. Patil, Polyaniline globules as a catalyst for WO3 nanoparticles for supercapacitor application. Mater. Res. Express 5(8), 085036 (2018)CrossRefGoogle Scholar
- 35.C.E. Patil, N.L. Tarwal, P.R. Jadhav, P.S. Shinde, H.P. Deshmukh, M.M. Karanjkar, A.V. Moholkar, J.H. Kim, P.S. Patil, Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Curr. Appl. Phys. 14(3), 389–395 (2014)CrossRefGoogle Scholar
- 36.M. Meenakshi, R. Sivakumar, P. Perumal, C. Sanjeeviraja, Studies on electrochromic properties of RF sputtered vanadium oxide: tungsten oxide thin films. Mater. Today Proc. 3, S30–S39 (2016)CrossRefGoogle Scholar
- 37.K. Bange, T. Gambke, Electrochromic materials for optical switching devices. Adv. Mater. 2(1), 10–16 (1990)CrossRefGoogle Scholar
- 38.S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater. 47(7), 3552–3559 (2018)CrossRefGoogle Scholar
- 39.H. Najafi-Ashtiani, A. Bahari, S. Ghasemi, A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: enhanced electrochromic coloration efficiency and switching response. J. Electroanal. Chem. 774, 14–21 (2016)CrossRefGoogle Scholar
- 40.X. An, C.Y. Jimmy, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012)CrossRefGoogle Scholar
- 41.Y. Djaoued, S. Balaji, R. Brüning, Electrochromic devices based on porous tungsten oxide thin films. J. Nanomater. 2012, 7 (2012)CrossRefGoogle Scholar
- 42.A.C. Anithaa, N. Lavanya, K. Asokan, C. Sekar, WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta 167, 294–302 (2015)CrossRefGoogle Scholar
- 43.D. Zappa, A. Bertuna, E. Comini, M. Molinari, N. Poli, G. Sberveglieri, Tungsten oxide nanowires for chemical detection. Anal. Methods 7(5), 2203–2209 (2015)CrossRefGoogle Scholar
- 44.V.V. Ganbavle, G.L. Agawane, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, structural, optical, electrical, and dielectric properties of the spray-deposited WO3 thin films. J. Mater. Eng. Perform. 23(4), 1204–1213 (2014)CrossRefGoogle Scholar
- 45.Y.S. Kim, Y.T. Kim, K. Lee, Low temperature volatile-organic-compound (VOC) sensor based on tungsten oxide nanorods. In 2005 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech (pp. 169–172, 2005)Google Scholar
- 46.S. Bai, K. Zhang, L. Wang, J. Sun, R. Luo, D. Li, A. Chen, Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. J. Mater. Chem. A 2(21), 7927–7934 (2014)CrossRefGoogle Scholar
- 47.Z. Zulkifli, S.M. Shinde, T. Suguira, G. Kalita, M. Tanemura, Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device. Appl. Surf. Sci. 356, 674–678 (2015)CrossRefGoogle Scholar
- 48.P. Periasamy, T. Krishnakumar, M. Sathish, M. Chavali, P.F. Siril, V.P. Devarajan, Structural and electrochemical studies of tungsten oxide (WO3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor. J. Mater. Sci.: Mater. Electron. 29(8), 6157–6166 (2018)Google Scholar
- 49.B.T. Sone, S.S. Nkosi, M.M. Nkosi, E. Coetsee-Hugo, H.C. Swart, M. Maaza, Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing. In AIP Conference Proceedings (vol. 1962, No. 1, p. 040003, 2018). AIP PublishingGoogle Scholar
- 50.Y. Liu, J. Li, W. Li, Q. Liu, Y. Yang, Y. Li, Q. Chen, Enhanced photoelectrochemical performance of WO3 film with HfO2 passivation layer. Int. J. Hydrogen Energy 40(29), 8856–8863 (2015)CrossRefGoogle Scholar
- 51.J. Shi, Z. Cheng, L. Gao, Y. Zhang, J. Xu, H. Zhao, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B 230, 736–745 (2016)CrossRefGoogle Scholar
- 52.T. Zhu, M.N. Chong, Y.W. Phuan, E.S. Chan, Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling. Colloids Surf. A 484, 297–303 (2015)CrossRefGoogle Scholar
- 53.R. Balzer, V. Drago, W.H. Schreiner, L.F. Probst, Synthesis and structure-activity relationship of a WO3 catalyst for the total oxidation of BTX. J. Braz. Chem. Soc. 25(11), 2026–2031 (2014)Google Scholar
- 54.K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D 41(15), 155417 (2008)CrossRefGoogle Scholar
- 55.A. Bahari, A.S. Nik, M. Roodbari, E. Mirshafiei, B. Amiri, Effect of silicon carbide nano dispersion on the mechanical and nano structural properties of cement. Natl. Acad. Sci. Lett. 38(4), 361–364 (2015)CrossRefGoogle Scholar
- 56.M.A. Kafi, A. Sadeghi-Nik, A. Bahari, A. Sadeghi-Nik, E. Mirshafiei, Microstructural characterization and mechanical properties of cementitious mortar containing montmorillonite nanoparticles. J. Mater. Civ. Eng. 28(12), 04016155 (2016)CrossRefGoogle Scholar
- 57.M. Özgür, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, U. Demirkol, S. Elmas, S. Özen, Ş. Korkmaz, Sn doped ZnO thin film deposition using thermionic vacuum arc technique. J. Alloy Compd. 774, 1017–1023 (2019)CrossRefGoogle Scholar
- 58.S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, S. Özen, Ş. Korkmaz, Investigation of the optical properties of the Cr doped CuxO thin film deposited by thermionic vacuum arc plasma. Optik 180, 350–354 (2019)CrossRefGoogle Scholar
- 59.C. Musaoğlu, S. Pat, R. Mohammadigharehbagh, S. Özen, Ş. Korkmaz, The thermionic vacuum arc method for rapid deposition of Cu/CuO/Cu2O thin film. J. Electron. Mater. 48(4), 2272–2277 (2019)CrossRefGoogle Scholar
- 60.S. Özen, S. Pat, Ş. Korkmaz, Characterization of Pb-doped GaN thin films grown by thermionic vacuum arc. J. Electron. Mater. 47(7), 3727–3732 (2018)CrossRefGoogle Scholar