Electrochromic properties of UV-colored WO3 thin film deposited by thermionic vacuum arc

  • Nihan Akkurt
  • Suat PatEmail author
  • Saliha Elmas
  • Şadan Korkmaz


Tungsten trioxide (WO3) is an efficient material for electrochromic (EC) application due to its better coloration efficiency in visible region. In this study, WO3 nanolayer thin films were deposited onto indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) substrate by thermionic vacuum arc technique to obtain the UV-colored EC device. The coloration efficiencies for UV region were calculated to be 30 and 14 cm2/C onto WO3/ITO- and WO3/FTO-coated glass for 378 nm, respectively. Reversibility values for the EC structure were obtained as 53 and 51% for the WO3/ITO and WO3/FTO, respectively. According to X-ray diffractometer (XRD) analysis, monoclinic and hexagonal phases for WO3 nanolayer were detected. The band gap of WO3 thin film was found as 3.08 eV. Morphological investigations of WO3 deposited onto glass show that there is a longitudinal growth on the surface.



This research activity was supported by Scientific Research Commission of Eskisehir Osmangazi University (Grant Number is 201719041).


  1. 1.
    V.R. Buch, A.K. Chawla, S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today 3(6), 1429–1437 (2016)Google Scholar
  2. 2.
    M. Jayachandran, R. Vijayalakshmi, V. Ravindran, C. Sanjeeviraja, Review on WO3 thin films: materials properties, preparation techniques and electrochromic devices. Trans. SAEST 40(2), 42–61 (2005)Google Scholar
  3. 3.
    Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J. Mater. Sci.: Mater. Electron. 26(11), 8404–8412 (2015)Google Scholar
  4. 4.
    T. Ali, Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci.: Mater. Electron. 29(2), 1209–1215 (2018)Google Scholar
  5. 5.
    A.A. Yadav, Y.M. Hunge, V.L. Mathe, S.B. Kulkarni, Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination. J. Mater. Sci.: Mater. Electron. 29(17), 15069–15073 (2018)Google Scholar
  6. 6.
    C.O. Avellaneda, L.O.S. Bulhões, Kinetics and thermodynamic behavior of WO3 and WO3: P thin films. Sol. Energy Mater. Sol. Cells 90(4), 395–401 (2006)CrossRefGoogle Scholar
  7. 7.
    T. Kuroki, Y. Matsushima, H. Unuma, Electrochromic response of WO3 and WO3-TiO2 thin films prepared from water-soluble precursors and a block copolymer template. J. Asian Ceram. Soc. 4(4), 367–370 (2016)CrossRefGoogle Scholar
  8. 8.
    Y.M. Hunge, Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram. Int. 43(13), 10089–10096 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.E. Firat, A. Peksoz, Electrochemical synthesis of polyaniline/inorganic salt binary nanofiber thin films for electrochromic applications. J. Mater. Sci.: Mater. Electron. 28(4), 3515–3522 (2017)Google Scholar
  11. 11.
    Y.E. Firat, A. Peksoz, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochim. Acta 295, 645–654 (2019)CrossRefGoogle Scholar
  12. 12.
    S.K. Deb, A novel electrophotographic system. Appl. Opt. 8(101), 192–195 (1969)CrossRefGoogle Scholar
  13. 13.
    T. Stapinski, K. Marszalek, B. Swatowska, A. Stanco, Characterisation and application of WO3 films for electrochromic devices. In Electron Technology Conference 2013 (Vol. 8902, p. 890224, 2013). International Society for Optics and PhotonicsGoogle Scholar
  14. 14.
    E. Şilik, S. Pat, S. Özen, R. Mohammadigharehbagh, H.H. Yudar, C. Musaoğlu, Ş. Korkmaz, Electrochromic properties of TiO2 thin films grown by thermionic vacuum arc method. Thin Solid Films 640, 27–32 (2017)CrossRefGoogle Scholar
  15. 15.
    K.J. Patel, M.S. Desai, C.J. Panchal, H.N. Deota, U.B. Trivedi, All-solid-thin film electrochromic devices consisting of layers ITO/NiO/ZrO2/WO3/ITO. J. Nano-electron. Phys. 5(2), 02023 (2013)Google Scholar
  16. 16.
    M.H. Kim, H.W. Choi, K.H. Kim, Thickness dependence of WO3-x thin films for electrochromic device application. Mol. Cryst. Liq. Cryst. 598(1), 54–61 (2014)CrossRefGoogle Scholar
  17. 17.
    P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys. 77(1), 117–133 (2003)CrossRefGoogle Scholar
  18. 18.
    M.C. Rao, Structure and properties of WO3 thin films for electrochromic device application. J. Non-oxide Glasses 5, 1–8 (2013)Google Scholar
  19. 19.
    I. Valyukh, S. Green, H. Arwin, G.A. Niklasson, E. Wäckelgård, C.G. Granqvist, Spectroscopic ellipsometry characterization of electrochromic tungsten oxide and nickel oxide thin films made by sputter deposition. Sol. Energy Mater. Sol. Cells 94(5), 724–732 (2010)CrossRefGoogle Scholar
  20. 20.
    H.H. Lu, Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering. J. Alloy Compd. 465(1–2), 429–435 (2008)CrossRefGoogle Scholar
  21. 21.
    C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens. Actuators B 144(1), 280–288 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Balaji, Y. Djaoued, A.S. Albert, R. Brüning, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21(11), 3940–3948 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Sivakumar, K. Shanthakumari, A. Thayumanavan, M. Jayachandran, C. Sanjeeviraja, Coloration and bleaching mechanism of tungsten oxide thin films in different electrolytes. Surf. Eng. 23(5), 373–379 (2007)CrossRefGoogle Scholar
  24. 24.
    M.F. Al-Kuhaili, A.H. Al-Aswad, S.M.A. Durrani, I.A. Bakhtiari, Transparent heat mirrors based on tungsten oxide–silver multilayer structures. Sol. Energy 83(9), 1571–1577 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu, Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Sol. Energy Mater. Sol. Cells 95(8), 2107–2112 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Novinrooz, M. Sharbatdaran, H. Noorkojouri, Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method. Open Phys. 3(3), 456–466 (2005)CrossRefGoogle Scholar
  27. 27.
    C.C. Chen, Characterization of porous WO3 electrochromic device by electrochemical impedance spectroscopy. J. Nanomater. (2013). CrossRefGoogle Scholar
  28. 28.
    Z. Jiao, J. Wang, L. Ke, X. Liu, H.V. Demir, M.F. Yang, X.W. Sun, Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochim. Acta 63, 153–160 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Elmas, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, U. Demirkol, S. Özen, Ş. Korkmaz, Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B 557, 27–33 (2019)CrossRefGoogle Scholar
  30. 30.
    M. Özgür, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, U. Demirkol, S. Elmas, S. Özen, Ş. Korkmaz, Al doped ZnO thin film deposition by thermionic vacuum arc. J. Mater. Sci.: Mater. Electron. 30(1), 624–630 (2019)Google Scholar
  31. 31.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 731, 136582 (2019)CrossRefGoogle Scholar
  32. 32.
    H. Najafi-Ashtiani, A. Bahari, S. Gholipour, S. Hoseinzadeh, Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys. A 124(1), 24 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Najafi-Ashtiani, A. Bahari, Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3. Opt. Mater. 58, 210–218 (2016)CrossRefGoogle Scholar
  34. 34.
    A.V. Kadam, S.B. Patil, Polyaniline globules as a catalyst for WO3 nanoparticles for supercapacitor application. Mater. Res. Express 5(8), 085036 (2018)CrossRefGoogle Scholar
  35. 35.
    C.E. Patil, N.L. Tarwal, P.R. Jadhav, P.S. Shinde, H.P. Deshmukh, M.M. Karanjkar, A.V. Moholkar, J.H. Kim, P.S. Patil, Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Curr. Appl. Phys. 14(3), 389–395 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Meenakshi, R. Sivakumar, P. Perumal, C. Sanjeeviraja, Studies on electrochromic properties of RF sputtered vanadium oxide: tungsten oxide thin films. Mater. Today Proc. 3, S30–S39 (2016)CrossRefGoogle Scholar
  37. 37.
    K. Bange, T. Gambke, Electrochromic materials for optical switching devices. Adv. Mater. 2(1), 10–16 (1990)CrossRefGoogle Scholar
  38. 38.
    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater. 47(7), 3552–3559 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Najafi-Ashtiani, A. Bahari, S. Ghasemi, A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: enhanced electrochromic coloration efficiency and switching response. J. Electroanal. Chem. 774, 14–21 (2016)CrossRefGoogle Scholar
  40. 40.
    X. An, C.Y. Jimmy, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. Djaoued, S. Balaji, R. Brüning, Electrochromic devices based on porous tungsten oxide thin films. J. Nanomater. 2012, 7 (2012)CrossRefGoogle Scholar
  42. 42.
    A.C. Anithaa, N. Lavanya, K. Asokan, C. Sekar, WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta 167, 294–302 (2015)CrossRefGoogle Scholar
  43. 43.
    D. Zappa, A. Bertuna, E. Comini, M. Molinari, N. Poli, G. Sberveglieri, Tungsten oxide nanowires for chemical detection. Anal. Methods 7(5), 2203–2209 (2015)CrossRefGoogle Scholar
  44. 44.
    V.V. Ganbavle, G.L. Agawane, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, structural, optical, electrical, and dielectric properties of the spray-deposited WO3 thin films. J. Mater. Eng. Perform. 23(4), 1204–1213 (2014)CrossRefGoogle Scholar
  45. 45.
    Y.S. Kim, Y.T. Kim, K. Lee, Low temperature volatile-organic-compound (VOC) sensor based on tungsten oxide nanorods. In 2005 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech (pp. 169–172, 2005)Google Scholar
  46. 46.
    S. Bai, K. Zhang, L. Wang, J. Sun, R. Luo, D. Li, A. Chen, Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. J. Mater. Chem. A 2(21), 7927–7934 (2014)CrossRefGoogle Scholar
  47. 47.
    Z. Zulkifli, S.M. Shinde, T. Suguira, G. Kalita, M. Tanemura, Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device. Appl. Surf. Sci. 356, 674–678 (2015)CrossRefGoogle Scholar
  48. 48.
    P. Periasamy, T. Krishnakumar, M. Sathish, M. Chavali, P.F. Siril, V.P. Devarajan, Structural and electrochemical studies of tungsten oxide (WO3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor. J. Mater. Sci.: Mater. Electron. 29(8), 6157–6166 (2018)Google Scholar
  49. 49.
    B.T. Sone, S.S. Nkosi, M.M. Nkosi, E. Coetsee-Hugo, H.C. Swart, M. Maaza, Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing. In AIP Conference Proceedings (vol. 1962, No. 1, p. 040003, 2018). AIP PublishingGoogle Scholar
  50. 50.
    Y. Liu, J. Li, W. Li, Q. Liu, Y. Yang, Y. Li, Q. Chen, Enhanced photoelectrochemical performance of WO3 film with HfO2 passivation layer. Int. J. Hydrogen Energy 40(29), 8856–8863 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Shi, Z. Cheng, L. Gao, Y. Zhang, J. Xu, H. Zhao, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B 230, 736–745 (2016)CrossRefGoogle Scholar
  52. 52.
    T. Zhu, M.N. Chong, Y.W. Phuan, E.S. Chan, Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling. Colloids Surf. A 484, 297–303 (2015)CrossRefGoogle Scholar
  53. 53.
    R. Balzer, V. Drago, W.H. Schreiner, L.F. Probst, Synthesis and structure-activity relationship of a WO3 catalyst for the total oxidation of BTX. J. Braz. Chem. Soc. 25(11), 2026–2031 (2014)Google Scholar
  54. 54.
    K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D 41(15), 155417 (2008)CrossRefGoogle Scholar
  55. 55.
    A. Bahari, A.S. Nik, M. Roodbari, E. Mirshafiei, B. Amiri, Effect of silicon carbide nano dispersion on the mechanical and nano structural properties of cement. Natl. Acad. Sci. Lett. 38(4), 361–364 (2015)CrossRefGoogle Scholar
  56. 56.
    M.A. Kafi, A. Sadeghi-Nik, A. Bahari, A. Sadeghi-Nik, E. Mirshafiei, Microstructural characterization and mechanical properties of cementitious mortar containing montmorillonite nanoparticles. J. Mater. Civ. Eng. 28(12), 04016155 (2016)CrossRefGoogle Scholar
  57. 57.
    M. Özgür, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, U. Demirkol, S. Elmas, S. Özen, Ş. Korkmaz, Sn doped ZnO thin film deposition using thermionic vacuum arc technique. J. Alloy Compd. 774, 1017–1023 (2019)CrossRefGoogle Scholar
  58. 58.
    S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, S. Özen, Ş. Korkmaz, Investigation of the optical properties of the Cr doped CuxO thin film deposited by thermionic vacuum arc plasma. Optik 180, 350–354 (2019)CrossRefGoogle Scholar
  59. 59.
    C. Musaoğlu, S. Pat, R. Mohammadigharehbagh, S. Özen, Ş. Korkmaz, The thermionic vacuum arc method for rapid deposition of Cu/CuO/Cu2O thin film. J. Electron. Mater. 48(4), 2272–2277 (2019)CrossRefGoogle Scholar
  60. 60.
    S. Özen, S. Pat, Ş. Korkmaz, Characterization of Pb-doped GaN thin films grown by thermionic vacuum arc. J. Electron. Mater. 47(7), 3727–3732 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Art and LettersEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.National Boron InstituteAnkaraTurkey

Personalised recommendations