Advertisement

Hierarchical flower-like TiO2 microspheres with improved dye-sensitized solar cell performance

  • Rui Zan
  • Yinghao Lv
  • Rong Jiang
  • Xiaoge Wu
  • Jianyun Zeng
  • Xiaogang WenEmail author
Article
  • 23 Downloads

Abstract

Hierarchical flower-like TiO2 microspheres (FMS) and TiO2 nanorice (NR) were obtained, respectively, by controlling the dosage of Ti precursor via a simple hydrothermal process. Flower-like TiO2 microspheres consist of nanopetals grown from the center radially, the nanopetals are about several nm in average thickness, and each nanopetal has a thinned tip with an average size of 15 nm. The unique hierarchical TiO2 microspheres with large surface area (118.6 m2 g−1) suggested its potential application in dye-sensitized solar cells (DSSCs). The power conversion efficiency of FMS-based DSSCs (9.58%) is much higher than that of NR-based DSSCs (7.13%), which could be ascribed to its excellent light-scattering and dye absorption ability, shorter electron transport pathway and longer electron recombination time derived from the thin thickness and large specific surface area of nanopetals.

Notes

Acknowledgements

We thank National Natural Science Foundation of China (No. 51072124) and the Sichuan Science and Technology Program (No. 2018GZ0463) for their financial support.

Supplementary material

10854_2019_2639_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 143 kb). Below is the link to the electronic supplementary material

References

  1. 1.
    M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martine, Environ. Sci. Technol. 27, 1776–1782 (1993)CrossRefGoogle Scholar
  2. 2.
    W. Fan, Q. Zhang, Y. Wang, Phys. Chem Chem Phys. 15, 2632–2649 (2013)CrossRefGoogle Scholar
  3. 3.
    G.R. Bamwenda, H. Arakawa, Sol. Energy Mater. Sol. Cells 70, 1–14 (2001)CrossRefGoogle Scholar
  4. 4.
    G.R. Dey, A.D. Belapurkar, K. Kishore, J. Photochem. Photobiol. A 163, 503–508 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Grätzel, Nature 414, 338 (2001)CrossRefGoogle Scholar
  6. 6.
    B. Oregan, M. Gratzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  7. 7.
    F. Sauvage, J.D. Decoppet, M. Graetzel, J. Am. Chem. Soc. 133, 9304–9310 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Mathew, A. Yella, M. Graetzel, Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  9. 9.
    O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, M. Saadat, F. Ansari, Renew. Energy 125, 590–598 (2018)CrossRefGoogle Scholar
  10. 10.
    O. Amiri, M. Salavati-Niasari, S. Bagheri, A.T. Yousefi, Sci. Rep. 6, 25227 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Teymourinia, M. Salavati-Niasari, O. Amiri, M. Farangi, J. Mol. Liq. 251, 267–272 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Peet, J.Y. Kim, G.C. Bazan, Nat. Mater. 6, 497–500 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Etgar, P. Gao, Z. Xue, M. Graetzel, J. Am. Chem. Soc. 134, 17396–17399 (2012)CrossRefGoogle Scholar
  14. 14.
    G.E. Eperon, V.M. Burlakov, H.J. Snaith, Adv. Funct. Mater. 24, 151–157 (2014)CrossRefGoogle Scholar
  15. 15.
    O. Amiri, N. Mir, F. Ansari, M. Salavati-Niasari, Electrochim. Acta 252, 315–321 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.Q. Li, Y.P. Que, S.Y. Dai, ACS Appl. Mater. Interfaces 7, 10928–10934 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Ye, J. Gong, Z. Lin, J. Am. Chem. Soc. 134, 15720–15723 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Zhu, J. Li, Q. Wu, ACS Appl. Mater. Interfaces 3, 3448–3453 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Q. Fu, G. Chen, Nanoscale 7, 12215–12224 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Zhang, T.R. Chou, G. Cao, Angew. Chem. Int. Ed. 47, 2402–2406 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Xin, M. Scheiner, Z. Lin, Langmuir 27, 14594–14598 (2011)CrossRefGoogle Scholar
  22. 22.
    Y.J. Kim, M.H. Lee, W.I. Lee, Adv. Mater. 21, 3668–3673 (2009)CrossRefGoogle Scholar
  23. 23.
    X. Feng, K. Shankar, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)CrossRefGoogle Scholar
  24. 24.
    D. Lee, H.B. Kim, D.J. Jang, J. Mater. Sci. 49, 3414–3422 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.Y. Luo, D.C. Mo, S.S. Lu, J. Mater. Sci. 49, 6742–6749 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Ye, H.Y. Liu, Z. Lin, Small 9, 312–321 (2013)CrossRefGoogle Scholar
  27. 27.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Yu, J. Fan, K. Lv, Nanoscale 2, 2144–2149 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Zan, J. Xiao, X. Wen, J. Mater. Sci. 28, 4107–4113 (2017)Google Scholar
  30. 30.
    E. Hosono, S. Fujihara, H. Zhou, ACS Nano 1, 273–278 (2007)CrossRefGoogle Scholar
  31. 31.
    A.K. Sinha, S. Jana, T. Pal, CrystEngComm 11, 1210–1212 (2009)CrossRefGoogle Scholar
  32. 32.
    S.J. Ho, C.W. Yeh, H.S. Chen, Mater. Des. 115, 332–338 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.P. Lin, S.Y. Lin, Y.W. Chen-Yang, J. Mater. Chem. A 1, 9875–9884 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Xiao, P. Li, X. Wen, Nanotechnology 29, 175603 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Ye, C. Chen, C. Lin, Nanoscale 5, 6577–6583 (2013)CrossRefGoogle Scholar
  36. 36.
    J.Y. Liao, B.X. Lei, C.Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)CrossRefGoogle Scholar
  37. 37.
    D. Cahen, G. Hodes, I. Riess, J. Phys. Chem. B 104, 2053–2059 (2000)CrossRefGoogle Scholar
  38. 38.
    R. Sui, V. Thangadurai, C.P. Berlinguette, Chem. Mater. 20, 7022–7030 (2008)CrossRefGoogle Scholar
  39. 39.
    J. Ye, W. Liu, L. Qi, J. Am. Chem. Soc. 133, 933–940 (2011)CrossRefGoogle Scholar
  40. 40.
    Z. Gao, Z. Wu, K. Jiang, CrystEngComm 15, 3351–3358 (2013)CrossRefGoogle Scholar
  41. 41.
    T. Hoshikawa, M. Yamada, K. Eguchi, J. Electrochem. Soc. 152, E68–E73 (2005)CrossRefGoogle Scholar
  42. 42.
    W.Q. Wu, Y.F. Xu, D.B. Kuang, Nanoscale 5, 4362–4369 (2013)CrossRefGoogle Scholar
  43. 43.
    D. Guo, S. Xiao, J. Yu, ACS Sustain. Chem. Eng. 5, 1315–1321 (2017)CrossRefGoogle Scholar
  44. 44.
    J.P. Gonzalez-Vazquez, J.A. Anta, J. Bisquert, J. Phys. Chem. C 114, 8552–8558 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations