Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light
- 9 Downloads
Abstract
The layered niobate Sr0.5Nb3O8·1.7H2O is synthesized by soft chemistry in aqueous electrolyte via Sr2+ → H+ exchange between strontium nitrate and niobic acid HNb3O8·H2O. The material is identified by X-ray diffraction using Rietveld refinement, thermal analysis (TG/DSC) and optical measurements. The semiconducting and photoelectrochemical properties are investigated for the first time. The band gap of Sr0.5Nb3O8·1.7H2O is evaluated at 3.67 eV, and the transition is directly allowed due to the charge transfer O2−: 2p → Nb5+: 4d. The thermal variation of the electrical conductivity shows that 4d electrons are localized and the data are fitted by a small-polaron hopping model: σ = σo exp {− 0.13 eV/kT}. The capacitance measurement done in the ionic electrolyte (Na2SO4, 10−2 M) indicates n-type semiconductivity with a flat band potential of − 0.09 VSCE. The conduction band, made up of Nb5+: 4d orbital, is located at − 0.22 VSCE. As application, Rhodamine B (RhB) is oxidized by photocatalysis on Sr0.5Nb3O8·1.7H2O through O2· radicals; 56% of the initial concentration (10 mg L−1) is eliminated after 3 h under solar light (90 mW cm−2), and the Rh B oxidation follows a first-order kinetic with a rate constant of 0.246 h−1.
Notes
Acknowledgements
This work was financially supported by the Faculty of Chemistry (USTHB University). The authors would like to thank Dr R. Bagtache, G. Bendiba and B. Mehdi for their optical, Raman and X-ray analysis, respectively.
References
- 1.K.M. Gangotri, M.K. Bhimwal, Electr. Power Energy Sys. 32, 1106–1110 (2010)CrossRefGoogle Scholar
- 2.X. Chen, S. Shen, L. Guo, S. Mao, Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
- 3.A.D. Paolaa, E. Garcia-López, G. Marcìa, L. Palmisanoa, J. Hazard. Mater. 211, 3–29 (2012)CrossRefGoogle Scholar
- 4.G. Rekhila, R. Brahimi, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 332, 345–350 (2017)CrossRefGoogle Scholar
- 5.P.I. Rajan, J.J. Vijaya, S.K. Jesudoss, K. Kaviyarasu, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Vaali-Mohammed, Mater. Res. Express 4, 085030 (2017)CrossRefGoogle Scholar
- 6.C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 185, 275–282 (2018)CrossRefGoogle Scholar
- 7.C.M. Magdalanea, K. Kaviyarasuc, N. Matinisec, N. Mayedwac, N. Mongwaketsic, D. Letsholathebe, G.T. Mola, N.A. Al-Dhabi, M.V. Arasu, M. Heninic, J. Kennedyc, M. Maazac, B. Jeyaraj, S. Afr, J. Chem. Eng. 26, 49–60 (2018)Google Scholar
- 8.Q. Liu, H. Liu, X. Zhou, Ch. Cong, K. Zhang, Solid State Ionic 176, 1549–1554 (2005)CrossRefGoogle Scholar
- 9.X. Zhang, L. Liu, J. Ma, X. Yang, X. Xu, Z. Tong, Mater. Lett. 95, 21–24 (2013)CrossRefGoogle Scholar
- 10.G. Zhang, X. Zou, J. Gong, F. He, H. Zhang, S. Ouyang, H. Liu, Q. Zhang, Y. Lie, X. Yang, B. Hu, J. Mol. Catal. 255, 109–116 (2006)CrossRefGoogle Scholar
- 11.Z. Yang, Y.F. Li, Q. Wua, N. Ren, Y. Zhang, Z. Liu, Y. Tang, J. Catal. 280, 247–254 (2011)CrossRefGoogle Scholar
- 12.R. Nedjar, M.M. Borel, A. Leclaire, B. Raveau, Mater. Res. Bull. 23, 497–500 (1988)CrossRefGoogle Scholar
- 13.J. Escobala, J. Mesaa, J. Pizarrob, B. Bazanb, M. Arriortuab, T.-F. Rojo, J. Solid State Chem. 179, 3768–3775 (2006)CrossRefGoogle Scholar
- 14.B. Bellal, S. Saadi, N. Koriche, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 70, 1132–1136 (2009)CrossRefGoogle Scholar
- 15.S. Boumaza, A. Bouguelia, R. Bouarab, M. Trari, Int. J. Hydrogen Energy 34, 4963–4967 (2009)CrossRefGoogle Scholar
- 16.H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sources 287, 158–163 (2015)CrossRefGoogle Scholar
- 17.R. Saroha, A. Gupta, A.-K. Panwar, J. Alloys. Compds. 696, 580–589 (2017)CrossRefGoogle Scholar
- 18.Q. Wei, T. Nakato, Microporous Mesoporous Mater. 96, 84–92 (2006)CrossRefGoogle Scholar
- 19.T. Nakato, K. Ito, K. Kuroda, C. Kato, Microporous Mater. 1, 283–286 (1993)CrossRefGoogle Scholar
- 20.S.K. Jesudoss, J.J. Vijaya, P.I. Rajan, K. Kaviyarasu, M. Sivachidambaram, L.J. Kennedy, H.A. Al-Lohedane, R. Jothiramalingame, Photochem. Photobiol. Sci. 16(5), 766–778 (2017). https://doi.org/10.1039/C7PP00006E CrossRefGoogle Scholar
- 21.X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Nanoscale Res. Lett. 11, 386–390 (2016)CrossRefGoogle Scholar
- 22.X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaza, Mater. Res. Bull. 97, 457–465 (2018)CrossRefGoogle Scholar
- 23.K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G.T. Mola, J. Kennedy, M. Maaza, Appl. Surf. Sci. 421, 234–239 (2017)CrossRefGoogle Scholar
- 24.N. Belmokhtar, R. Brahimi, R. Nedjar, M. Trari, Mater. Sci. Semicond. Proc. 39, 433–440 (2015)CrossRefGoogle Scholar
- 25.N. Chebahi, R. Nedjar, R. Brahimi, B. Bellal, M. Trari, Mater. Sci. Semicond. Proc. 68, 172–177 (2017)CrossRefGoogle Scholar
- 26.M.A. Bizeto, V.R.L. Constantino, H.F. Brito, J. Alloys. Compds. 311, 159–168 (2000)CrossRefGoogle Scholar
- 27.K. Sayama, A. Tanaka, K. Domen, K. Maruka, T. Onishi, J. Catal. 124, 541–547 (1990)CrossRefGoogle Scholar
- 28.A.S. Dias, S. Lima, D. Carriazo, V. Rives, M. Pillinger, A.A. Valente, J. Catal. 244, 230–237 (2006)CrossRefGoogle Scholar
- 29.H. Kato, A. Kudo, J. Photochem. Photobiol. A 145, 129–133 (2001)CrossRefGoogle Scholar
- 30.G. Zhang, J. Gong, X. Zou, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang, B. Hu, J. Chem. Eng. 123, 59–64 (2006)CrossRefGoogle Scholar
- 31.X. Kong, Q. Lu, J. Huang, L. Li, J. Zhang, X. Wang, J. Li, Y. Wang, Q. Feng, J. Alloys Compds. 746, 68–76 (2018)CrossRefGoogle Scholar
- 32.M. Gasperin, Acta Cryst. B 38, 2024–2026 (1982)CrossRefGoogle Scholar
- 33.R. Nedjar, M.M. Borel, B. Raveau, Mater. Res. Bull. 20, 1291–1296 (1985)CrossRefGoogle Scholar
- 34.Y. Hu, G. Li, S. Zong, J. Shi, L. Guo, Catal. Today 315, 117–125 (2018)CrossRefGoogle Scholar
- 35.G. Zhang, Y. Hu, X. Ding, L. Zhou, J. Xie, J. Solid State Chem. 181, 2133–2138 (2008)CrossRefGoogle Scholar
- 36.M. Hervieu, C. Michel, B. Raveau, Bull. Soc. Chim. Fr. 11, 3939–3943 (1971)Google Scholar
- 37.A. Grandin, M.M. Borel, M. Hervieu, B. Raveau, J. Solid State Chem. 68, 369–374 (1987)CrossRefGoogle Scholar
- 38.A. Altomare, C. Cuocci, C. Ciacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46, 1231–1235 (2013)CrossRefGoogle Scholar
- 39.A. Altomare, G. Campi, C. Cuocci, L. Erksson, R. Rizzi, P.-E. Werner, J. Appl. Cryst. 42, 768–775 (2009)CrossRefGoogle Scholar
- 40.C.D. Whiston, A.J. Smith, Acta Cryst. 23, 82–84 (1967)CrossRefGoogle Scholar
- 41.J.-F. Liu, X.-L. Li, Y.-D. Li, J. Cryst. Growth 247, 419–424 (2003)CrossRefGoogle Scholar
- 42.T. Ban, S. Yoshikawa, Y. Ohya, J. Colloid Interface Sci. 364, 85–91 (2011)CrossRefGoogle Scholar
- 43.J. Xiong, Y. Liu, S. Liang, S. Zhang, Y. Li, L. Wu, J. Catal. 342, 98–104 (2016)CrossRefGoogle Scholar
- 44.R. Li, L. Liu, B. Ming, Y. Ji, R. Wang, Appl. Surf. Sci. 439, 983–990 (2018)CrossRefGoogle Scholar
- 45.Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy 40, 12611–12618 (2015)CrossRefGoogle Scholar
- 46.G. Rekhila, Y. Gabes, Y. Bessekhouad, M. Trari, Sol. Energy 166, 220–225 (2018)CrossRefGoogle Scholar
- 47.K. Cherifi, G. Rekhila, S. Omeiri, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 368, 290–295 (2019)CrossRefGoogle Scholar
- 48.S. Kabouche, B. Bellal, Y. Louafi, M. Trari, Mater. Chem. Phys. 195, 229–235 (2017)CrossRefGoogle Scholar
- 49.L. Jiang, Y. Qiu, Z. Yi, J. Mater. Chem. A 1, 2878–2885 (2013)CrossRefGoogle Scholar
- 50.S. Raja, R.R. Babu, S.C. Mohan, K. Jothivenkatachalam, K. Ramamurthi, Appl. Surf. Sci. 497, 143737 (2019)CrossRefGoogle Scholar