Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light

  • O. Ouagagui
  • G. RekhilaEmail author
  • R. Nedjar
  • M. TrariEmail author


The layered niobate Sr0.5Nb3O8·1.7H2O is synthesized by soft chemistry in aqueous electrolyte via Sr2+ → H+ exchange between strontium nitrate and niobic acid HNb3O8·H2O. The material is identified by X-ray diffraction using Rietveld refinement, thermal analysis (TG/DSC) and optical measurements. The semiconducting and photoelectrochemical properties are investigated for the first time. The band gap of Sr0.5Nb3O8·1.7H2O is evaluated at 3.67 eV, and the transition is directly allowed due to the charge transfer O2−: 2p → Nb5+: 4d. The thermal variation of the electrical conductivity shows that 4d electrons are localized and the data are fitted by a small-polaron hopping model: σ = σo exp {− 0.13 eV/kT}. The capacitance measurement done in the ionic electrolyte (Na2SO4, 10−2 M) indicates n-type semiconductivity with a flat band potential of − 0.09 VSCE. The conduction band, made up of Nb5+: 4d orbital, is located at − 0.22 VSCE. As application, Rhodamine B (RhB) is oxidized by photocatalysis on Sr0.5Nb3O8·1.7H2O through O2· radicals; 56% of the initial concentration (10 mg L−1) is eliminated after 3 h under solar light (90 mW cm−2), and the Rh B oxidation follows a first-order kinetic with a rate constant of 0.246 h−1.



This work was financially supported by the Faculty of Chemistry (USTHB University). The authors would like to thank Dr R. Bagtache, G. Bendiba and B. Mehdi for their optical, Raman and X-ray analysis, respectively.


  1. 1.
    K.M. Gangotri, M.K. Bhimwal, Electr. Power Energy Sys. 32, 1106–1110 (2010)CrossRefGoogle Scholar
  2. 2.
    X. Chen, S. Shen, L. Guo, S. Mao, Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  3. 3.
    A.D. Paolaa, E. Garcia-López, G. Marcìa, L. Palmisanoa, J. Hazard. Mater. 211, 3–29 (2012)CrossRefGoogle Scholar
  4. 4.
    G. Rekhila, R. Brahimi, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 332, 345–350 (2017)CrossRefGoogle Scholar
  5. 5.
    P.I. Rajan, J.J. Vijaya, S.K. Jesudoss, K. Kaviyarasu, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Vaali-Mohammed, Mater. Res. Express 4, 085030 (2017)CrossRefGoogle Scholar
  6. 6.
    C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 185, 275–282 (2018)CrossRefGoogle Scholar
  7. 7.
    C.M. Magdalanea, K. Kaviyarasuc, N. Matinisec, N. Mayedwac, N. Mongwaketsic, D. Letsholathebe, G.T. Mola, N.A. Al-Dhabi, M.V. Arasu, M. Heninic, J. Kennedyc, M. Maazac, B. Jeyaraj, S. Afr, J. Chem. Eng. 26, 49–60 (2018)Google Scholar
  8. 8.
    Q. Liu, H. Liu, X. Zhou, Ch. Cong, K. Zhang, Solid State Ionic 176, 1549–1554 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, L. Liu, J. Ma, X. Yang, X. Xu, Z. Tong, Mater. Lett. 95, 21–24 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Zhang, X. Zou, J. Gong, F. He, H. Zhang, S. Ouyang, H. Liu, Q. Zhang, Y. Lie, X. Yang, B. Hu, J. Mol. Catal. 255, 109–116 (2006)CrossRefGoogle Scholar
  11. 11.
    Z. Yang, Y.F. Li, Q. Wua, N. Ren, Y. Zhang, Z. Liu, Y. Tang, J. Catal. 280, 247–254 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Nedjar, M.M. Borel, A. Leclaire, B. Raveau, Mater. Res. Bull. 23, 497–500 (1988)CrossRefGoogle Scholar
  13. 13.
    J. Escobala, J. Mesaa, J. Pizarrob, B. Bazanb, M. Arriortuab, T.-F. Rojo, J. Solid State Chem. 179, 3768–3775 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Bellal, S. Saadi, N. Koriche, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 70, 1132–1136 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Boumaza, A. Bouguelia, R. Bouarab, M. Trari, Int. J. Hydrogen Energy 34, 4963–4967 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sources 287, 158–163 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Saroha, A. Gupta, A.-K. Panwar, J. Alloys. Compds. 696, 580–589 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Wei, T. Nakato, Microporous Mesoporous Mater. 96, 84–92 (2006)CrossRefGoogle Scholar
  19. 19.
    T. Nakato, K. Ito, K. Kuroda, C. Kato, Microporous Mater. 1, 283–286 (1993)CrossRefGoogle Scholar
  20. 20.
    S.K. Jesudoss, J.J. Vijaya, P.I. Rajan, K. Kaviyarasu, M. Sivachidambaram, L.J. Kennedy, H.A. Al-Lohedane, R. Jothiramalingame, Photochem. Photobiol. Sci. 16(5), 766–778 (2017). CrossRefGoogle Scholar
  21. 21.
    X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Nanoscale Res. Lett. 11, 386–390 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaza, Mater. Res. Bull. 97, 457–465 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G.T. Mola, J. Kennedy, M. Maaza, Appl. Surf. Sci. 421, 234–239 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Belmokhtar, R. Brahimi, R. Nedjar, M. Trari, Mater. Sci. Semicond. Proc. 39, 433–440 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Chebahi, R. Nedjar, R. Brahimi, B. Bellal, M. Trari, Mater. Sci. Semicond. Proc. 68, 172–177 (2017)CrossRefGoogle Scholar
  26. 26.
    M.A. Bizeto, V.R.L. Constantino, H.F. Brito, J. Alloys. Compds. 311, 159–168 (2000)CrossRefGoogle Scholar
  27. 27.
    K. Sayama, A. Tanaka, K. Domen, K. Maruka, T. Onishi, J. Catal. 124, 541–547 (1990)CrossRefGoogle Scholar
  28. 28.
    A.S. Dias, S. Lima, D. Carriazo, V. Rives, M. Pillinger, A.A. Valente, J. Catal. 244, 230–237 (2006)CrossRefGoogle Scholar
  29. 29.
    H. Kato, A. Kudo, J. Photochem. Photobiol. A 145, 129–133 (2001)CrossRefGoogle Scholar
  30. 30.
    G. Zhang, J. Gong, X. Zou, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang, B. Hu, J. Chem. Eng. 123, 59–64 (2006)CrossRefGoogle Scholar
  31. 31.
    X. Kong, Q. Lu, J. Huang, L. Li, J. Zhang, X. Wang, J. Li, Y. Wang, Q. Feng, J. Alloys Compds. 746, 68–76 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Gasperin, Acta Cryst. B 38, 2024–2026 (1982)CrossRefGoogle Scholar
  33. 33.
    R. Nedjar, M.M. Borel, B. Raveau, Mater. Res. Bull. 20, 1291–1296 (1985)CrossRefGoogle Scholar
  34. 34.
    Y. Hu, G. Li, S. Zong, J. Shi, L. Guo, Catal. Today 315, 117–125 (2018)CrossRefGoogle Scholar
  35. 35.
    G. Zhang, Y. Hu, X. Ding, L. Zhou, J. Xie, J. Solid State Chem. 181, 2133–2138 (2008)CrossRefGoogle Scholar
  36. 36.
    M. Hervieu, C. Michel, B. Raveau, Bull. Soc. Chim. Fr. 11, 3939–3943 (1971)Google Scholar
  37. 37.
    A. Grandin, M.M. Borel, M. Hervieu, B. Raveau, J. Solid State Chem. 68, 369–374 (1987)CrossRefGoogle Scholar
  38. 38.
    A. Altomare, C. Cuocci, C. Ciacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46, 1231–1235 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Altomare, G. Campi, C. Cuocci, L. Erksson, R. Rizzi, P.-E. Werner, J. Appl. Cryst. 42, 768–775 (2009)CrossRefGoogle Scholar
  40. 40.
    C.D. Whiston, A.J. Smith, Acta Cryst. 23, 82–84 (1967)CrossRefGoogle Scholar
  41. 41.
    J.-F. Liu, X.-L. Li, Y.-D. Li, J. Cryst. Growth 247, 419–424 (2003)CrossRefGoogle Scholar
  42. 42.
    T. Ban, S. Yoshikawa, Y. Ohya, J. Colloid Interface Sci. 364, 85–91 (2011)CrossRefGoogle Scholar
  43. 43.
    J. Xiong, Y. Liu, S. Liang, S. Zhang, Y. Li, L. Wu, J. Catal. 342, 98–104 (2016)CrossRefGoogle Scholar
  44. 44.
    R. Li, L. Liu, B. Ming, Y. Ji, R. Wang, Appl. Surf. Sci. 439, 983–990 (2018)CrossRefGoogle Scholar
  45. 45.
    Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy 40, 12611–12618 (2015)CrossRefGoogle Scholar
  46. 46.
    G. Rekhila, Y. Gabes, Y. Bessekhouad, M. Trari, Sol. Energy 166, 220–225 (2018)CrossRefGoogle Scholar
  47. 47.
    K. Cherifi, G. Rekhila, S. Omeiri, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 368, 290–295 (2019)CrossRefGoogle Scholar
  48. 48.
    S. Kabouche, B. Bellal, Y. Louafi, M. Trari, Mater. Chem. Phys. 195, 229–235 (2017)CrossRefGoogle Scholar
  49. 49.
    L. Jiang, Y. Qiu, Z. Yi, J. Mater. Chem. A 1, 2878–2885 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Raja, R.R. Babu, S.C. Mohan, K. Jothivenkatachalam, K. Ramamurthi, Appl. Surf. Sci. 497, 143737 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Materials Science, Faculty of Chemistry, (USTHB)AlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, (USTHB)AlgiersAlgeria

Personalised recommendations