Advertisement

Characteristics of down conversion green emitting Ba3Bi2(PO4)4:Tb3+ nanosized particles for advanced illuminating devices

  • Jyoti Dalal
  • Avni Khatkar
  • Mandeep Dalal
  • V. B. Taxak
  • S. P. KhatkarEmail author
Article
  • 12 Downloads

Abstract

Nano-scaled green-emitting Ba3Bi2(PO4)4:Tb3+ crystalline series was effectively obtained via very efficient and straightforward combustion-synthesis route for the very first time. The JCPDS data (Card No: 780204) of Ba3Bi2(PO4)4 crystal were used for profiling the diffraction patterns of various mol% samples. The structure and lattice parameters of Ba3Bi1.70Tb0.30(PO4)4 system have been investigated by Rietveld refinement analysis. Further, it was found that incorporation of dopant (Tb3+) ion into the monoclinic crystal lattice of C12/c1 (15) space group symmetry did not induce any major structural changes. Lowering in the optical band-gap value from 4.16 to 4.02 eV was observed when Ba3Bi2(PO4)4 host lattice is doped with 15 mol% of activator ions. The photoluminescence analysis of Ba3Bi2(PO4)4:Tb3+ series at 368 nm excitation yielded the bright green emission due to the 5D4 → 7F5 transition. A maximum in emission intensity is observed corresponding to the Ba3Bi1.70Tb0.30(PO4)4 composition. Critical energy distance (13.235 Å) proposed the existence of energy transfer through multipolar interaction (dipole–dipole) phenomenon, which is cross-verified by Huang analysis (s = 4.94). The value of radiative-lifetime and non-radiative transition rate are calculated to be 2.22 ms and 10.3 s−1, respectively. Furthermore, the very high value of quantum efficiency (97%) and the results of various optical analysis favor the practical utility of down-conversion Ba3Bi1.70Tb0.30(PO4)4 nanophosphor for solid-state and other illuminating devices.

Notes

Acknowledgements

The author (Ms. Jyoti Dalal) acknowledges the “Council of Scientific and Industrial Research” (CSIR), New Delhi, India for providing the economic support to the present work in the form of senior research fellowship (SRF, Award No: 09/382(0180)/2016-EMR-I).

References

  1. 1.
    A.G. Shiravizadeh, R. Yousefi, S.M. Elahia, S.A. Sebta, Phys. Chem. Chem. Phys. 19, 18089–18098 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Devi, M. Dalal, M. Bala, S.P. Khatkar, V.B. Taxak, P. Boora, J. Mater. Sci.: Mater. Electron. 27, 12506–12516 (2016)Google Scholar
  3. 3.
    J.D. Dutra, T.D. Bispo, R.O. Freire, J. Comput. Chem. 35, 772–775 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Chapel, R. Boonsin, G. Chadeyron, D. Boyer, A. Bousquet, R. Mahiou, W. Henrique Cassinelli, C.V. Santilli, S. Therias, New J. Chem. 41, 12006–12013 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Dalal, V.B. Taxak, S. Chahar, A. Khatkar, S.P. Khatkar, J. Phys. Chem. Solids 89, 45–52 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Deng, H. Yu, Y. Li, Y. Hua, G. Jia, S. Zhao, H. Wang, L. Huang, Y. Li, C. Li, S. Xu, J. Mater. Chem. C 1, 3194–3199 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Zhou, Z. Xia, J. Mater. Chem. C 2, 6978–6984 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Balaji, A. Durairajan, K.K. Rasu, S.M. Babu, J. Lumin. 146, 458–463 (2014)CrossRefGoogle Scholar
  9. 9.
    N.S. Singh, N.K. Sahu, D. Bahadur, J. Mater. Chem. C 2, 548–555 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv. 5, 54622–54628 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Zhang, L. Zhou, M. Gong, Opt. Mater. 35, 993–997 (2013)CrossRefGoogle Scholar
  12. 12.
    K. Omri, A. Alyamani, L.E. Mir, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Omari, O.M. Lemine, E.M.M. Lassaad, Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  14. 14.
    S.K. Ghandomani, B. Khoshnevisan, R. Yousefi, J. Mater. Sci.: Mater. Electron. 29, 18989–18996 (2018)Google Scholar
  15. 15.
    R. Yousefi, F.J. Sheini, Ceram. Int. 38, 5821–5825 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Appl. Phys. A 124, 710 (2018)CrossRefGoogle Scholar
  17. 17.
    R. Yousefi, H.R. Azimi, M.R. Mahmoudian, W.J. Basirun, Appl. Surf. Sci. 435, 886–893 (2018)CrossRefGoogle Scholar
  18. 18.
    G.S.R. Raju, E. Pavitra, G. Nagaraju, X.Y. Guan, J.S. Yu, RSC Adv. 5, 22217–22223 (2015)CrossRefGoogle Scholar
  19. 19.
    A.N. Yerpude, S.J. Dhoble, Bull. Mater. Sci. 36, 715–717 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, R.K. Malik, V.B. Taxak, S.P. Khatkar, J. Mater. Sci.: Mater. Electron. 30, 17547–17558 (2019)Google Scholar
  21. 21.
    R.G. Nair, S. Nigam, V. Sudarsan, R.K. Vatsa, V.K. Jain, J. Lumin. 195, 271–277 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Chahar, R. Devi, M. Dalal, M. Bala, J. Dalal, P. Boora, V.B. Taxak, R. Lather, S.P. Khatkar, Ceram. Int. 45, 606–613 (2019)CrossRefGoogle Scholar
  23. 23.
    X. Li, Y. Zhang, D. Geng, J. Lian, G. Zhang, Z. Hou, J. Lin, J. Mater. Chem. C 2, 9924–9933 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Grzyb, R.J. Wiglusz, A. Gruszeczka, S. Lis, Dalton Trans. 43, 17255–17264 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Xia, R.-S. Liu, J. Phys. Chem. C 116, 15604–15609 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Dahiya, M. Dalal, J. Dalal, V.B. Taxak, S.P. Khatkar, D. Kumar, Mater. Res. Bull. 99, 86–92 (2018)CrossRefGoogle Scholar
  27. 27.
    S.-D. Sonika, S.P. Han, M. Khatkar, V.B. Kumar, Taxak. Mater. Sci. Eng., B 178, 1436–1442 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Dalal, M. Dalal, S. Devi, S. Chahar, A. Hooda, A. Khatkar, R.K. Malik, V.B. Taxak, S.P. Khatkar, Methods Appl. Fluoresc. (2019).  https://doi.org/10.1088/2050-6120/ab33b6 CrossRefGoogle Scholar
  29. 29.
    A. Podhorodecki, M. Nyk, J. Misiewicz, W. Strek, J. Lumin. 126, 219–224 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Mahlik, E. Cavalli, M. Amer, P. Boutinaud, Phys. Chem. Chem. Phys. 17, 32341–32346 (2015)CrossRefGoogle Scholar
  31. 31.
    K. Li, M. Shang, D. Geng, H. Lian, Y. Zhang, J. Fan, J. Lin, Inorg. Chem. 53, 6743–6751 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Yu, J. Chen, Y. Pu, T. Zhang, S. Gan, J. Rare Earths 33, 366–370 (2015)CrossRefGoogle Scholar
  33. 33.
    F.S. Liu, Q.L. Liu, J.K. Liang, J. Luo, L.T. Yang, G.B. Song, Y. Zhang, L.X. Wang, J.N. Yao, G.H. Rao, J. Alloy. Compd. 425, 278–283 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Yang, Y. Liang, Q. Gui, B. Zhao, D. Jin, M. Lin, L. Yan, H. You, L. Dai, Y. Liu, Sci. Rep. 5, 11844 (2015)CrossRefGoogle Scholar
  35. 35.
    W.U. Khan, J. Li, X. Li, Q. Wu, J. Yan, Y. Xu, F. Xie, J. Shi, M. Wu, Dalton Trans. 46, 1885–1891 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, S.P. Khatkar, J. Alloy. Compd. 767, 409–418 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Jayachandiran, S.M.M. Kennedy, J. Alloys Compd. 775, 353–359 (2018)CrossRefGoogle Scholar
  38. 38.
    J. Dalal, M. Dalal, S. Devi, R. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, J. Lumin. 210, 293–302 (2019)CrossRefGoogle Scholar
  39. 39.
    A. Hooda, S.P. Khatkar, A. Khatkar, R.K. Malik, J. Dalal, S. Devi, V.B. Taxak, Mater. Chem. Phys. 232, 39–48 (2019)CrossRefGoogle Scholar
  40. 40.
    G.K. Behrh, R. Gautier, C. Latouche, S. Jobic, H.S. Brault, Inorg. Chem. 55, 9144–9146 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, J. Lumin. 216, 116697 (2019)CrossRefGoogle Scholar
  42. 42.
    R. Brüninghoff, D.D. Engelsen, G.R. Fern, T.G. Ireland, R. Dhillon, J. Silver, RSC Adv. 6, 42561–42571 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Que, Z. Ci, Y. Wang, G. Zhu, S. Xin, Y. Shi, Q. Wang, CrystEngComm 15, 6389–6394 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, Q. Meng, J. Alloys Compd. 509, 6096–6101 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Dalal, J. Dalal, S. Chahar, H. Dahiya, S. Devi, P. Dhankhar, S. Kumar, V.B. Taxak, D. Kumar, S.P. Khatkar, J. Alloys Compd. 805, 84–96 (2019)CrossRefGoogle Scholar
  46. 46.
    Q. Sun, B. Li, S. Wang, H. Guo, X. Huang, J. Mater. Sci.: Mater. Electron. 29, 12972–12977 (2018)Google Scholar
  47. 47.
    M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)CrossRefGoogle Scholar
  48. 48.
    A. Hooda, S.P. Khatkar, A. Khatkar, S. Chahar, S. Devi, J. Dalal, V.B. Taxak, Curr. Appl. Phys. 19, 621–628 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Electronics and Communication (UIET)Maharshi Dayanand UniversityRohtakIndia

Personalised recommendations