Enhancement of thermoelectric performance through synergy of Pb acceptor doping and superstructure modulation for p-type Bi2Te3

  • Wei Wu
  • Wenxin Liu
  • Fengrong YuEmail author


A facile and efficient way in optimizing thermoelectric performance of Bi2Te3 alloy was reported through synergy of Pb acceptor doping and superstructure modulation. By varying the amount of Pb doping, the substitutional defect \({\text{Pb}}^{\prime}_{\text{Bi}}\), arranging along the c-axis of PbBi2Te4 and PbBi4Te7 and acting as electron acceptor and superstructure, was formed successively in the Bi2Te3 matrix. This significantly reduced the lattice thermal conductivity and suppressed the bipolar effect. The figure of merit was enhanced and modulated, exhibiting a peak ZT of 1.06 and a broadened and optimized average ZT of 0.9 in a wide temperature range of 323–503 K.



This work was supported by the National Science Foundation of China (No. 51402254).


  1. 1.
    C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016)CrossRefGoogle Scholar
  2. 2.
    Goldsmid, H.J.: The improvement of a specific material—bismuth telluride. In: Hull, R., Osgood, R.M., Parisi, J., Warlimont, H. (eds) Introduction to Thermoelectricity, 2nd edn. Springer, Heidelberg, pp. 85–108 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011)CrossRefGoogle Scholar
  4. 4.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)CrossRefGoogle Scholar
  5. 5.
    S.J. Poon, Half Heusler compounds: promising materials for mID-to-high temperature thermoelectric conversion. J. Phys. D 52, 493001 (2019)CrossRefGoogle Scholar
  6. 6.
    S. Demirel, E. Altin, E. Oz, S. Altin, A. Bayri, An enhancement ZT and spin state transition of Ca3Co4O9 with Pb doping. J. Alloys Comp. 627, 430–437 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manage 140, 167–181 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Shi, L. Chen, Thermoelectric materials step up. Nat. Mater. 15, 691–692 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Shufen, J. Zhao, J. Guo, Qingyu Yan, Jan Ma, and Huey Hoon Hng, p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhang, C., Mata, M., Li, Z., Belarre, F.J., Arbiol, J., Khor, K.A., Zhu, D.P.B., Yan, Q., Xiong, Q.: Enhanced thermoelectric performance, of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30, 630–638 (2016)CrossRefGoogle Scholar
  12. 12.
    R. Deng, X. Su, Z. Zheng, W. Liu, Y.Yan,Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, X. Tang, Thermal conductivity in Bi0.5Sb1.5Te3+xand the role of dense dislocation arrays at grain boundaries. Sci. Adv. 4(6), eaar5606 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Li, J.M. Li, J.C. Li, Y.S. Wang, J. Zhang, X.Y. Qin, Y. Cao, Y.S. Li, G.D. Tang, High thermoelectric performance of n-type Bi2Te2.7Se0.3 via nanostructure engineering. J. Mater. Chem. A 6, 9642–9649 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, Y. Zhang, S. Ortega, M. Ibáñez, K.H. Lim, A. Grau-Carbonell, S. Martí-Sánchez, K.M. Ng, J. Arbiol, M.V. Kovalenko, D. Cadavid, A. Cabot, Nano Lett. 18, 2557–2563 (2018)CrossRefGoogle Scholar
  15. 15.
    J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. 48, 8616–8639 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Xie, J. Xu, Z. Liu, G. Liu, H. Shao, X. Tan, H. Jiang, J. Jiang, Stabilization of Thermoelectric properties of the Cu/Bi0.48Sb1.52Te3 composite for advantageous power generation. J. Electron. Mater. 46, 2746–2751 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016)CrossRefGoogle Scholar
  18. 18.
    C.-C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.-S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloys Comp. 671, 538–544 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Kim, G. Kim, S.I. Kim, K.H. Lee, W. Lee, Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3. J. Alloys Compd. 772, 593–602 (2019)CrossRefGoogle Scholar
  20. 20.
    B. Xu, M.T. Agne, T. Feng, T.C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J.H. Bahk, M.G. KanatzIDis, G.J. Snyder, Y. Wu, Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low–medium temperatures (500–600 K). Adv. Mater. 29, 1605140 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy Environ. Sci. 11, 1520–1535 (2018)CrossRefGoogle Scholar
  23. 23.
    J.M. Song, J.U.R.J.Y. Cho, S. Lee, W.S. Seo, S. Kim, S. Kim, K.H. Lee, D. Roh., W.H. Shin, Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scr. Mater. 165, 78–83 (2019)CrossRefGoogle Scholar
  24. 24.
    S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, X. Tang, Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015)CrossRefGoogle Scholar
  25. 25.
    L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, e88 (2014)CrossRefGoogle Scholar
  26. 26.
    K.H. Lee, W.H. Shin, H.-S. Kim, K. Lee, J.W. Roh, J. Yoo, J. Kim, S.W. Kim, S. Kim, Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys. Scr. Mater. 160, 15–19 (2019)CrossRefGoogle Scholar
  27. 27.
    Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 8, e302 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn1 – xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 9, 2011–2019 (2016)CrossRefGoogle Scholar
  29. 29.
    A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermal response in van der Waals heterostructures. J. Phys. 29, 035504 (2017)Google Scholar
  30. 30.
    G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, G. Zhang, Engineering of charge carriers via a twodimensional heterostructure to enhance the thermoelectric figure of merit. Nanoscale 10, 7077–7084 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRefGoogle Scholar
  32. 32.
    C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y. Chen, L. Zheng, S. Gong, J. Li, J. He, L. Zhao, Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 6, 98216–98220 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Plecháček, J. Navrátil, J. Horák, D. Bachan, A. Krejčová, P. Lošťák, Point and structural defects in Bi2PbxTe3 single crystals. Solid State Ionics 177, 3513–3519 (2007)CrossRefGoogle Scholar
  34. 34.
    S.V. Eremeev, YuM Koroteev, E.V. Chulkov, On possible deep subsurface states in topological insulators: the PbBi4Te7 system. JETP Lett. 92, 161–165 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Předota, L. Beneš, J. Horák, On the incorporation of germanium atoms into the Bi2Te3 crystal lattice. Phys. Stat. SolIDi A 100, 401–404 (1987)CrossRefGoogle Scholar
  36. 36.
    G.S. Nolas, J. Sharp, H.J. GoldsmID, Thermoelectrics: basic principles and new materials developments, in Thermoelectrics: Basic Principles and New Materials Developments, ed. by A. Zunger, R.M. Osgood Jr., R. Hull, H. Sakaki (Springer, New York, 2001), pp. 59–90CrossRefGoogle Scholar
  37. 37.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  38. 38.
    L.-D. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRefGoogle Scholar
  39. 39.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRefGoogle Scholar
  40. 40.
    K. Kim, G. Kim, H. Lee, K.H. Lee, W. Lee, Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation. Scr. Mater. 145, 41–44 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Resources and MaterialsNortheastern University at QinhuangdaoQinhuangdaoChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations