New 2D material Ti3C2 and AgBr co-modified BiOBr with improved photocatalytic activity for degradation of organic pollutants

  • Yang Bai
  • Kai Zhang
  • Xian ShiEmail author
  • Xing Li


At present, a large amount of water pollution has gradually become an urgent problem in the world. Many monomers of photocatalysts are difficult to degrade organic pollutants effectively. In this work, the photocatalyst BiOBr is modified with 2D material Ti3C2 and silver halide as co-promoter. And the related catalysts were used to characterize the prepared catalyst. At the same time, the effects of Ti3C2 and Ag@AgBr deposition on BiOBr degradation of organic compounds were studied. The photocatalytic degradation of RhB and phenol was carried out under visible-light irradiation. The results show that the photodegradation effect has been significantly improved after the deposition of AgBr and Ti3C2 on the surface of BiOBr. And the corresponding photocatalytic mechanism was proposed. The excellent stable performance and catalytic properties of this composite have broad prospects that provide a feasible way to improve the photocatalytic effect of MXene as a co-catalyst.



This work was supported by the National Natural Science Foundation of China (No. 51502146, 51702270, 21671113), the PetroChina Innovation Foundation (No. 2018D-5007-0604), the Open Fund (201601) of the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) and the Open Fund (PEBM201702) of the Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education (Harbin Normal University).

Supplementary material

10854_2019_2629_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1092 kb) Experimental method, Characterization, EDS mapping of Bi, O, Br, Ag, Ti and C of ABT. XPS survey, XPS of Br 3d, DRS of BOB, AB and ABT and others are described in the supplementary information


  1. 1.
    J. Zhu, P.Z. Li, W. Guo, Y. Zhao, R. Zou, Coord. Chem. Rev. 359, 80–101 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, Y. Wang, Q. Ling, Y. Zhu, B. Appl. Catal., Environ. 200, 222–229 (2017)Google Scholar
  3. 3.
    C. Liu, T. Sun, L. Wu, J. Liang, Q. Huang, J. Chen, W. Hou, Appl. Catal. B 170–171, 17–24 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Muhulet, F. Miculescu, S.I. Voicu, F. Schu¨tt, V.K. Thakur, Y.K. Mishra, Mater. Today Energy 9, 154–186 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Thakur, B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, V.K. Thakur, J Clean Prod 198, 143–159 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 19, 366–373 (2007)CrossRefGoogle Scholar
  7. 7.
    M.A. Gondala, X. Chang, M.A. Ali, Z.H. Yamania, Q. Zhou, G. Ji, Appl. Catal. A 397, 192–200 (2011)CrossRefGoogle Scholar
  8. 8.
    L.Q. Ye, X.L. Jin, C. Liu, C.H. Ding, H.Q. Xie, K.H. Chu, P.K. Wong, Appl. Catal. B 187, 281–290 (2016)CrossRefGoogle Scholar
  9. 9.
    H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, M.Y. Choi, J. Environ. Sci. 74, 107–115 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, Appl. Catal. B 106, 445–452 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Koutavarapu, G. Lee, B. Babu, K. Yoo, J. Shim, J. Mater. Sci. 30(11), 10900–10911 (2019)Google Scholar
  12. 12.
    B. Yang, L. Ye, W. Li, S. Xian, P. Wang, B. Wei, P.K. Wong, Appl. Catal. B 194, 98–104 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, L. Ye, Appl. Catal. B 243, 322–329 (2019)CrossRefGoogle Scholar
  14. 14.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26, 992–1005 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Naguib, Y. Gogotsi, Acc. Chem. Res. 48, 128–135 (2015)CrossRefGoogle Scholar
  16. 16.
    S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, Adv. Funct. Mater. 28, 1800136 (2018)CrossRefGoogle Scholar
  17. 17.
    X. Yu, W. Yin, T. Wang, Y. Zhang, ACS 35, 2909–2916 (2019)Google Scholar
  18. 18.
    T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Appl. Catal. B 239, 545–554 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Tai, Z. Duan, Z. He, X. Li, J. Xu, B. Liu, Y. Jiang, Sens. Actuators B Chem. 298, 126874 (2019)CrossRefGoogle Scholar
  20. 20.
    L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci. 1, 90–112 (2014)Google Scholar
  21. 21.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009–2026 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Bai, L. Ye, T. Chen, P. Wang, L. Wang, X. Shi, P. Wong, Appl. Catal. B 203, 633–640 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Bai, X. Shi, P. Wang, L. Wnag, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, Chem. Eng. J. 365, 34–42 (2019)CrossRefGoogle Scholar
  24. 24.
    L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B 142, 1–7 (2013)Google Scholar
  25. 25.
    L. Ye, J. Chen, J. Liu, L. Tian et al., Appl. Catal. B 130, 1–7 (2013)Google Scholar
  26. 26.
    C. Yu, C. Fan, X. Meng, K. Yang, F. Cao, X. Li, React. Kinet. Mech. Catal. 103, 141–151 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Yu, F. Cao, G. Li, R. Wei, J.C. Yu, R. Jin, Q. Fan, C. Wang, Sep. Purif. Technol. 120, 110–122 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Shenawi-Khalil, V. Uvarov, S. Fronton, I. Popov, Y. Sassonm, J. Phys. Chem. C 116, 11004–11012 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, ACS Catal. 2, 1677–1683 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Babu, R. Koutavarapu, V.V.N. Harish, J. Shim, K. Yoo, Ceram. Int. 45, 5743–5750 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Shang, W.Z. Wang, L. Zhang, J. Hazard. Mater. 167, 803–809 (2009)CrossRefGoogle Scholar
  32. 32.
    L. Ye, X. Jin, X. Ji, C. Liu, Y. Su, H. Xie, C. Liu, Chem. Eng. J. 29, 39–46 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Chen, Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, H. Yu, Chem. Eng. J. 348, 157–170 (2018)CrossRefGoogle Scholar
  34. 34.
    C. Liu, Q. Xu, Q. Zhang et al., J. Mater. Sci. 54, 2458–2471 (2019)CrossRefGoogle Scholar
  35. 35.
    Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang, K. Zhao, L. Zhou, L. Moskaleva, S. Guo, L. Mai, Int. Ed. Engl. 57, 496–500 (2018)CrossRefGoogle Scholar
  36. 36.
    J. He, D.W. Shao, L.C. Zheng, L.J. Zheng et al., Appl. Catal. B 203, 917–926 (2017)CrossRefGoogle Scholar
  37. 37.
    J.M. Luo, J.H. Zheng et al., Adv. Funct. Mater. 29, 1808107 (2019)CrossRefGoogle Scholar
  38. 38.
    L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, F.P. Cao, Z. Guo, Appl. Surf. Sci. 311, 858–863 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Chen, H. Huang, C. Zeng, X. Du, Y. Zhang, A.C.S. Sustain, Chem. Eng. 5, 7777–7791 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations