Synthesis, characterization, optical and photocatalytic activity of yttrium and copper co-doped zinc ferrite under visible light
- 16 Downloads
Abstract
In this study, yttrium doped zinc ferrite (ZnFe2−xYxO4x = 0.01–0.1) and yttrium and copper co-doped zinc ferrite (CuyZn1−yFe2−xYxO4x = 0.1 and y = 0.5) were synthesized by solution combustion method. The synthesized nanoparticles were authenticated by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDAX) and UV–visible spectroscopy. The photocatalytic activity of synthesized nanoparticles was studied by performing the degradation of methylene blue (MB) under visible light. 95% of MB was degraded in 180 min using yttrium-doped zinc ferrite. 89% of MB was degraded in 30 min using copper and yttrium co-doped zinc ferrite under visible light using 10 mg of the catalyst and 50 µl of hydrogen peroxide. Photocatalytic degradation of colorless pollutant bisphenol A also carried out using the doped zinc ferrite.
Notes
Acknowledgements
The authors thank VIT University, Vellore, for providing research facilities and seed grant for research.
Supplementary material
References
- 1.E.A. Naeini, M. Movahedi, N. Rasouli, Z. Sadeghi, Mater. Sci. Semicond. Process. 73, 72 (2018)CrossRefGoogle Scholar
- 2.W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, J. Am. Chem. Soc. 36, 134 (2012)Google Scholar
- 3.R. Ramesh Kumar, S. Mitra, RSC Adv. 3, 25058 (2013)CrossRefGoogle Scholar
- 4.O. Veiseh, J.W. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010)CrossRefGoogle Scholar
- 5.C.H. Cunningham, T. Arai, P.C. Yang, M.V. McConnell, J.M. Pauly, S.M. Conolly, Magn. Reson. Med. 53, 999 (2005)CrossRefGoogle Scholar
- 6.T.J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.H. Cho, J.K. Lee, Angew. Chem. Int. 44, 1068 (2005)CrossRefGoogle Scholar
- 7.T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pędziwiatr, I. Mironyuk, R. Gargula, P. Kurzydło, New J. Chem. 43, 3038 (2019)CrossRefGoogle Scholar
- 8.M. Arshad, M. Asghar, M. Junaid, M.F. Warsi, M.N. Rasheed, M. Hashim, M.A. Al-Maghrabi, M.A. Khan, J. Magn. Magn. Mater. 474, 98 (2007)CrossRefGoogle Scholar
- 9.B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, Trends Biotechnol. 31(4), 240–248 (2014)CrossRefGoogle Scholar
- 10.V.S. Kiran, S. Sumathi, J. Magn. Magn. Mater. 421, 113 (2017)CrossRefGoogle Scholar
- 11.E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
- 12.M. Mukherjee, U.K. Ghorai, M. Samanta, A. Santra, G.P. Das, K.K. Chattopadhyay, Appl. Surf. Sci. 418, 156 (2017)CrossRefGoogle Scholar
- 13.M. Samanta, M. Mukherjee, U.K. Ghorai, S. Sarkar, C. Bose, K.K. Chattopadyay, Appl. Surf. Sci. 449, 113 (2018)CrossRefGoogle Scholar
- 14.S. Ghosh, S. Sarkar, B.K. Das, D. Sen, M. Samanta, K.K. Chattopadyay, Phys. Chem. Chem. Phys. 19, 29998 (2017)CrossRefGoogle Scholar
- 15.D.D. Mishra, G. Tan, J. Phys. Chem. Solids 123, 157 (2018)CrossRefGoogle Scholar
- 16.M. Asgharian, M. Mehdipourghazi, B. Khoshandam, N. Keramati, Chem. Phys. Lett. 16, 719 (2019)Google Scholar
- 17.S. Singhal, R. Sharma, C. Singh, S. Bansal, Indian J. Mater. Sci. 2013, 21 (2013)Google Scholar
- 18.M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, H.R. Naika, K. Vinu, Microchem. J. 146, 1227 (2019)CrossRefGoogle Scholar
- 19.S.S. Imam, R. Adnan, N.H. Kaus, Res. Chem. Intermed. 44, 5357 (2018)CrossRefGoogle Scholar
- 20.R. Sharma, V. Kumar, S. Bansal, S. Singhal, Mater. Res. Bull. 90, 94 (2017)CrossRefGoogle Scholar
- 21.P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Arab. J. Chem. 9, 1618 (2016)CrossRefGoogle Scholar
- 22.Z. Cvejic, S. Rakic, S. Jankov, S. Skuban, A. Kapor, J. Alloys Compd. 480, 241 (2009)CrossRefGoogle Scholar
- 23.Q. Xing, Z. Peng, C. Wang, Z. Fu, X. Fu, Phys. B 407, 388 (2012)CrossRefGoogle Scholar
- 24.V.S. Kirankumar, S. Sumathi, Mater. Chem. Phys. 197, 17 (2017)CrossRefGoogle Scholar
- 25.M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151, 1031 (2011)CrossRefGoogle Scholar
- 26.H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, J. Mater. Chem. A 2, 16 (2015)Google Scholar
- 27.M. Saha, S. Mukherjee, S. Kumar, S. Dey, RSC Adv. 6, 58125 (2016)CrossRefGoogle Scholar
- 28.B. Zhao, J. Wang, H. Li, H. Wang, X. Jia, P. Su, Phys. Chem. Chem. Phys. 17, 14836 (2015)CrossRefGoogle Scholar
- 29.B. Pei, Z. Jiaqi, Z. Yuankun, H. Jiecai, Nucl. Instrum. Methods Phys. Res. B 307, 429 (2013)CrossRefGoogle Scholar
- 30.S. Balu, K. Uma, G.T. Pan, T. Yang, S. Ramaraj, Materials 6, 1030 (2018)CrossRefGoogle Scholar
- 31.S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S.S. Dhar, K. Selvam, J. Colloid Interface Sci. 480, 126 (2016)CrossRefGoogle Scholar
- 32.C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, PLoS ONE 12, 3 (2017)Google Scholar
- 33.V.S. Kirankumar, S. Sumathi, Environ. Sci. Pollut. Res. 26, 19189 (2019)CrossRefGoogle Scholar
- 34.C. Wang, L. Zhu, C. Chang, Y. Fu, X. Chu, Catal. Commun. 37, 92 (2013)CrossRefGoogle Scholar
- 35.D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley, S.G. Fischer-Drowos, J. Chen, J. Environ. Chem. Eng. 6, 4927 (2018)CrossRefGoogle Scholar
- 36.N.K. Eswar, P.C. Ramamurthy, G. Madras, Photochem. Photobiol. Sci. 14, 1227 (2015)CrossRefGoogle Scholar