Advertisement

Synthesis, characterization, optical and photocatalytic activity of yttrium and copper co-doped zinc ferrite under visible light

  • P. Ajithkumar
  • S. Mohana
  • S. SumathiEmail author
Article
  • 16 Downloads

Abstract

In this study, yttrium doped zinc ferrite (ZnFe2−xYxO4x = 0.01–0.1) and yttrium and copper co-doped zinc ferrite (CuyZn1−yFe2−xYxO4x = 0.1 and y = 0.5) were synthesized by solution combustion method. The synthesized nanoparticles were authenticated by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDAX) and UV–visible spectroscopy. The photocatalytic activity of synthesized nanoparticles was studied by performing the degradation of methylene blue (MB) under visible light. 95% of MB was degraded in 180 min using yttrium-doped zinc ferrite. 89% of MB was degraded in 30 min using copper and yttrium co-doped zinc ferrite under visible light using 10 mg of the catalyst and 50 µl of hydrogen peroxide. Photocatalytic degradation of colorless pollutant bisphenol A also carried out using the doped zinc ferrite.

Notes

Acknowledgements

The authors thank VIT University, Vellore, for providing research facilities and seed grant for research.

Supplementary material

10854_2019_2628_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 67 kb)

References

  1. 1.
    E.A. Naeini, M. Movahedi, N. Rasouli, Z. Sadeghi, Mater. Sci. Semicond. Process. 73, 72 (2018)CrossRefGoogle Scholar
  2. 2.
    W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, J. Am. Chem. Soc. 36, 134 (2012)Google Scholar
  3. 3.
    R. Ramesh Kumar, S. Mitra, RSC Adv. 3, 25058 (2013)CrossRefGoogle Scholar
  4. 4.
    O. Veiseh, J.W. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010)CrossRefGoogle Scholar
  5. 5.
    C.H. Cunningham, T. Arai, P.C. Yang, M.V. McConnell, J.M. Pauly, S.M. Conolly, Magn. Reson. Med. 53, 999 (2005)CrossRefGoogle Scholar
  6. 6.
    T.J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.H. Cho, J.K. Lee, Angew. Chem. Int. 44, 1068 (2005)CrossRefGoogle Scholar
  7. 7.
    T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pędziwiatr, I. Mironyuk, R. Gargula, P. Kurzydło, New J. Chem. 43, 3038 (2019)CrossRefGoogle Scholar
  8. 8.
    M. Arshad, M. Asghar, M. Junaid, M.F. Warsi, M.N. Rasheed, M. Hashim, M.A. Al-Maghrabi, M.A. Khan, J. Magn. Magn. Mater. 474, 98 (2007)CrossRefGoogle Scholar
  9. 9.
    B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, Trends Biotechnol. 31(4), 240–248 (2014)CrossRefGoogle Scholar
  10. 10.
    V.S. Kiran, S. Sumathi, J. Magn. Magn. Mater. 421, 113 (2017)CrossRefGoogle Scholar
  11. 11.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Mukherjee, U.K. Ghorai, M. Samanta, A. Santra, G.P. Das, K.K. Chattopadhyay, Appl. Surf. Sci. 418, 156 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Samanta, M. Mukherjee, U.K. Ghorai, S. Sarkar, C. Bose, K.K. Chattopadyay, Appl. Surf. Sci. 449, 113 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Ghosh, S. Sarkar, B.K. Das, D. Sen, M. Samanta, K.K. Chattopadyay, Phys. Chem. Chem. Phys. 19, 29998 (2017)CrossRefGoogle Scholar
  15. 15.
    D.D. Mishra, G. Tan, J. Phys. Chem. Solids 123, 157 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Asgharian, M. Mehdipourghazi, B. Khoshandam, N. Keramati, Chem. Phys. Lett. 16, 719 (2019)Google Scholar
  17. 17.
    S. Singhal, R. Sharma, C. Singh, S. Bansal, Indian J. Mater. Sci. 2013, 21 (2013)Google Scholar
  18. 18.
    M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, H.R. Naika, K. Vinu, Microchem. J. 146, 1227 (2019)CrossRefGoogle Scholar
  19. 19.
    S.S. Imam, R. Adnan, N.H. Kaus, Res. Chem. Intermed. 44, 5357 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Sharma, V. Kumar, S. Bansal, S. Singhal, Mater. Res. Bull. 90, 94 (2017)CrossRefGoogle Scholar
  21. 21.
    P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Arab. J. Chem. 9, 1618 (2016)CrossRefGoogle Scholar
  22. 22.
    Z. Cvejic, S. Rakic, S. Jankov, S. Skuban, A. Kapor, J. Alloys Compd. 480, 241 (2009)CrossRefGoogle Scholar
  23. 23.
    Q. Xing, Z. Peng, C. Wang, Z. Fu, X. Fu, Phys. B 407, 388 (2012)CrossRefGoogle Scholar
  24. 24.
    V.S. Kirankumar, S. Sumathi, Mater. Chem. Phys. 197, 17 (2017)CrossRefGoogle Scholar
  25. 25.
    M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151, 1031 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, J. Mater. Chem. A 2, 16 (2015)Google Scholar
  27. 27.
    M. Saha, S. Mukherjee, S. Kumar, S. Dey, RSC Adv. 6, 58125 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Zhao, J. Wang, H. Li, H. Wang, X. Jia, P. Su, Phys. Chem. Chem. Phys. 17, 14836 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Pei, Z. Jiaqi, Z. Yuankun, H. Jiecai, Nucl. Instrum. Methods Phys. Res. B 307, 429 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Balu, K. Uma, G.T. Pan, T. Yang, S. Ramaraj, Materials 6, 1030 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S.S. Dhar, K. Selvam, J. Colloid Interface Sci. 480, 126 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, PLoS ONE 12, 3 (2017)Google Scholar
  33. 33.
    V.S. Kirankumar, S. Sumathi, Environ. Sci. Pollut. Res. 26, 19189 (2019)CrossRefGoogle Scholar
  34. 34.
    C. Wang, L. Zhu, C. Chang, Y. Fu, X. Chu, Catal. Commun. 37, 92 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley, S.G. Fischer-Drowos, J. Chen, J. Environ. Chem. Eng. 6, 4927 (2018)CrossRefGoogle Scholar
  36. 36.
    N.K. Eswar, P.C. Ramamurthy, G. Madras, Photochem. Photobiol. Sci. 14, 1227 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Advanced ScienceVIT UniversityVelloreIndia

Personalised recommendations