Advertisement

Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction

  • Muhammad Umair Khan
  • Gul Hassan
  • Jinho BaeEmail author
Article
  • 55 Downloads

Abstract

To block sneak current in a crossbar array, we propose asymmetric resistive switching device based on zinc oxide (ZnO) and magnetic iron oxide (Fe2O3) heterojunction, which has highly bendable performance with low power consumption. The ZnO/Fe2O3 heterojunction based active layer is fabricated on indium tin oxide (ITO). Polyethylene terephthalate (PET) substrate through spin coater and silver (Ag) is used as top electrode. Particularly, the active layer is protected by the magnetic force of Fe2O3 covered on ZnO, and hence, it can be bent under 1 mm diameter. The proposed memory is operated at low voltage of ± 1 V with reading voltage of ± 0.10204 V. In forward current, the fabricated device has high resistance state (HRS) of ~ 16.17 MΩ and low resistance state (LRS) of ~ 179.41 kΩ, respectively, at read voltage of + 0.10204 V, and Roff/Ron ratio is recorded as ~ 90.1. In reverse current, the HRS of ~ 15.69 MΩ and LRS of  ~ 9.23 MΩ are recorded at read voltage of − 0.10204 V, and Roff/Ron ratio is ~ 1.6976, which insure that the proposed asymmetric memory device helps to reduce sneak current problem.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4015627).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    J.D. Meindl, Q. Chen, J.A. Davis, Limits on silicon nanoelectronics for terascale integration. Science 293(5537), 2044 (2001)CrossRefGoogle Scholar
  2. 2.
    C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, Y. Xie, Overcoming the challenges of crossbar resistive memory architectures, in 2015 IEEE 21st international symposium on high performance computer architecture (HPCA), 2015 7–11 Feb 2015, pp. 476–488Google Scholar
  3. 3.
    L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theor. 18(5), 507–519 (1971)CrossRefGoogle Scholar
  4. 4.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)CrossRefGoogle Scholar
  5. 5.
    M.U. Khan, G. Hassan, M.A. Raza, J. Bae, Bipolar resistive switching device based on N, N′-bis(3-methylphenyl)-N, N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124(10), 726 (2018)CrossRefGoogle Scholar
  6. 6.
    Yu-R Jeon, Y. Abbas, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 11(26), 23329–23336 (2019)CrossRefGoogle Scholar
  7. 7.
    Y. Abbas, S.R. Dugasani, M.T. Raza, Yu-R Jeon, S. Ha-Park, C. Choi, The observation of resistive switching characteristics using transparent and biocompatible Cu2+ -doped salmon DNA composite thin film. Nanotechnology 30(33), 335203 (2019)CrossRefGoogle Scholar
  8. 8.
    S. Ali, J. Bae, K.H. Choi, C.H. Lee, Y.H. Doh, S. Shin, N.P. Kobayashi, Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron. 17, 121–128 (2015)CrossRefGoogle Scholar
  9. 9.
    H.-J. Koo, J.-H. So, M.D. Dickey, O.D. Velev, Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23(31), 3559–3564 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Cassinerio, N. Ciocchini, D. Ielmini, Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25(41), 5975–5980 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Hassan, M.U. Khan, J. Bae, Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism. Appl. Phys. A 125(1), 18 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Hassan, S. Ali, J. Bae, C.H. Lee, Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction. Appl. Phys. A 123(4), 256 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Zhu, J. Zhou, Z. Guo, Z. Sun, An overview of materials issues in resistive random access memory. J. Materiomics 1(4), 285–295 (2015)CrossRefGoogle Scholar
  14. 14.
    A.S. Sokolov, M. Ali, R. Riaz, Y. Abbas, M.J. Ko, C. Choi, Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 29, 1807504 (2019)CrossRefGoogle Scholar
  15. 15.
    S. Shin, K. Kim, S. Kang, Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)CrossRefGoogle Scholar
  16. 16.
    M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44(2), 176–183 (2013)CrossRefGoogle Scholar
  17. 17.
    Y.W. Choi, D. Kang, P.V. Pikhitsa, T. Lee, S.M. Kim, G. Lee, D. Tahk, M. Choi, Ultra-sensitive pressure sensor based on guided straight mechanical cracks. Sci. Rep. 7, 40116 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015)CrossRefGoogle Scholar
  19. 19.
    M.U. Khan, G. Hassan, M.A. Raza, J. Bae, N.P. Kobayashi, Schottky diode based resistive switching device based on ZnO/PEDOT:PSS heterojunction to reduce sneak current problem. J. Mater. Sci.: Mater. Electron. 30(5), 4607–4617 (2019)Google Scholar
  20. 20.
    I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)CrossRefGoogle Scholar
  21. 21.
    Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Ali, J. Bae, C.H. Lee, N.P. Kobayashi, S. Shin, A. Ali, Resistive switching device with highly asymmetric current–voltage characteristics: a solution to backward sneak current in passive crossbar arrays. Nanotechnology 29(45), 455201 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Bae, N.P. Kobayashi, Resistive switching device with highly-asymmetric current-voltage characteristics: its error analysis and new design parameter. Semicond. Sci. Technol. 34(2), 025007 (2019)CrossRefGoogle Scholar
  24. 24.
    K. Sekizawa, K. Oh-ishi, K. Kataoka, T. Arai, T.M. Suzuki, T. Morikawa, Stoichiometric water splitting using a p-type Fe2O3 based photocathode with the aid of a multi-heterojunction. J. Mater. Chem. A 5(14), 6483–6493 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Woo, J. Hong, S. Choi, H.-W. Lee, J.-P. Ahn, C.S. Kim, S.W. Lee, Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 16(14), 2814–2818 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Dukenbayev, I. Korolkov, D. Tishkevich, A. Kozlovskiy, S. Trukhanov, Y. Gorin, E. Shumskaya, E. Kaniukov, D. Vinnik, M. Zdorovets, M. Anisovich, A. Trukhanov, D. Tosi, C. Molardi, Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials. 9, 494 (2019)CrossRefGoogle Scholar
  27. 27.
    D.Z. Tulebayeva, A.L. Kozlovskiy, I.V. Korolkov, Y.G. Gorin, A.V. Kazantsev, L. Abylgazina, E.E. Shumskaya, E.Y. Kaniukov, M.V. Zdorovets, Modification of Fe3O4 nanoparticles with carboranes. Mater. Res. Exp. 5, 105011 (2018)CrossRefGoogle Scholar
  28. 28.
    T. Seadira, G. Sadanandam, T.A. Ntho, X. Lu, C.M. Masuku, M. Scurrell, Hydrogen production from glycerol reforming: conventional and green production. Rev. Chem. Eng. 34(5), 695–726 (2018)CrossRefGoogle Scholar
  29. 29.
    S.A. Jadhav, S.V. Patil, Facile synthesis of magnetic iron oxide nanoparticles and their characterization. Front. Mater. Sci. 8(2), 193–198 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80A(2), 333–341 (2007)CrossRefGoogle Scholar
  31. 31.
    M.A. Hoque, M.R. Ahmed, G.T. Rahman, M.T. Rahman, M.A. Islam, M.A. Khan, M.K. Hossain, Fabrication and comparative study of magnetic Fe and α-Fe2O3 nanoparticles dispersed hybrid polymer (PVA + Chitosan) novel nanocomposite film. Results Phys. 10, 434–443 (2018)CrossRefGoogle Scholar
  32. 32.
    S.M.A. Naqvi, H. Soleimani, N. Yahya, K. Irshad, Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol–gel method. AIP Conf. Proc. 1621, 530–537 (2014)CrossRefGoogle Scholar
  33. 33.
    M.U. Khan, G. Hassan, J. Bae, Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. J. Mater. Sci. 30, 18744–18752 (2019)Google Scholar
  34. 34.
    G. Hassan, J. Bae, M.U. Khan, S. Ali, Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. Mater. Sci. Eng. B 246, 1–6 (2019)CrossRefGoogle Scholar
  35. 35.
    M.U. Khan, G. Hassan, J. Bae, Non-volatile resistive switching based on zirconium dioxide: poly (4-vinylphenol) nano-composite. Appl. Phys. A 125, 378 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ocean System EngineeringJeju National UniversityJejuRepublic of Korea
  2. 2.Centre for Advanced Electronics & Photovoltaic Engineering (CAEPE)International Islamic UniversityIslamabadPakistan

Personalised recommendations