Advertisement

Graphene oxide–silver nanocomposite SERS substrate for sensitive detection of nitro explosives

  • Preeti GargEmail author
  • Bharti
  • R. K. Soni
  • R. Raman
Article

Abstract

Here, we carried out the sensing of nitro amine explosives through surface-enhanced Raman scattering (SERS) employing silver nanoparticle (Ag NP)-decorated reduced graphene oxide (rGO) nanocomposite substrate. In situ reduction process has been utilized to prepare the reduced graphene oxide–silver nanocomposite. The areal distribution and structural properties of Ag NPs have been studied. The fabricated nanocomposite was characterized using microscopic, spectroscopic and thermogravimetric methods. Moreover, the electrochemical properties of rGO–Ag nanocomposites were analysed using electrochemical methods. Raman spectra show the enhancement in the Raman signal of rGO-decorated Ag NPs with an intensity enhancement factor of 12.5 for D peak and 9 for G peak. The Ag NP-enriched rGO has also demonstrated strong SERS activity towards the detection of cyclotetramethylene tetranitramine and cyclotrimethylenetrinitramine up to 10−12 M as the limit of detection with SERS enhancement of 109. Thus, the synthesized nanocomposite shows potential applications for sensing of explosives.

Notes

Acknowledgements

The authors (PG and RR) acknowledge the support from the Director of Solid-State Physics Laboratory (SSPL) for her motivation and giving permission to publish this work.

References

  1. 1.
    J.H. Chung, S.G. Cho, Bull. Korean Chem. Soc. 35, 3547–3552 (2014)CrossRefGoogle Scholar
  2. 2.
    D. Gopalakrishnan, W.R. Dichtel, J. Am. Chem. Soc. 135, 8357–8362 (2013)CrossRefGoogle Scholar
  3. 3.
    R. Kanchanapally, S.S. Sinha, Z. Fan, M. Dubey, E. Zakar, P.C. Ray, J. Phys. Chem. C 118, 7070–7075 (2014)CrossRefGoogle Scholar
  4. 4.
    Z.Q. Tian, B. Ren, J.F. Li, Z.L. Yang, Chem. Commun. 34, 3514–3534 (2007)CrossRefGoogle Scholar
  5. 5.
    Z. Fan, R. Kanchanapally, P.C. Ray, J. Phys. Chem. Lett. 4, 3813–3818 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974)CrossRefGoogle Scholar
  7. 7.
    D.L. Jeanmaire, R.P. VAN Duyne, J. Electroanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
  8. 8.
    M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRefGoogle Scholar
  9. 9.
    K.M. Kosuda, J.M. Bingham, K.L. Wustholz, R.P. Van Duyne, Compr. Nanosci. Technol. 1–5, 263–301 (2010)Google Scholar
  10. 10.
    L. Guerrini, D. Graham, Chem. Soc. Rev. 41, 7085–7107 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Silver, H. Kitadai, H. Liu, T. Granzier-Nakajima, M. Terrones, X. Ling, S. Huang, Nanomaterials 9, 1 (2019)CrossRefGoogle Scholar
  12. 12.
    A.F. Girão, M.C. Serrano, A. Completo, P.A. Marques, Biomater. Sci. 7, 1228–1239 (2019)CrossRefGoogle Scholar
  13. 13.
    A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1, 31 (2019)CrossRefGoogle Scholar
  14. 14.
    H. Zheng, D. Ni, Z. Yu, P. Liang, Food Chem. 217, 511–516 (2017)CrossRefGoogle Scholar
  15. 15.
    W. Zhang, L. Jiang, J.A. Piper, Y. Wang, J Anal. Test. 2, 26–44 (2018)CrossRefGoogle Scholar
  16. 16.
    P.V. Shanta, Q. Cheng, ACS Sens 2, 817–827 (2017)CrossRefGoogle Scholar
  17. 17.
    K. Karthikeyan, R. Mohan, S.J. Kim, Appl. Phys. Lett. 98, 244101 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Compos. B 167, 643 (2019)CrossRefGoogle Scholar
  19. 19.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Z. Zinatloo-Ajabshir, J. Alloys Compd. 767, 1164 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Environ. Manage. 233, 107 (2019)CrossRefGoogle Scholar
  21. 21.
    T.K. Naqvi, M. Sree Satya Bharati, A.K. Srivastava, M.M. Kulkarni, A.M. Siddiqui, S.V. Rao, P.K. Dwivedi, ACS Omega (2019).  https://doi.org/10.1021/acsomega.9b01975 CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, D. Zhang, Y. Lu, Y. Yao, S. Li, Q. Liu, Biosens. Bioelectron. 68, 494–499 (2015)CrossRefGoogle Scholar
  23. 23.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  24. 24.
    Bharti, I. Khurana, A.K. Shaw, A. Saxena, J.M. Khurana, P.K. Rai, Water Air Soil Pollut. (2018).  https://doi.org/10.1007/s11270-017-3664-2 CrossRefGoogle Scholar
  25. 25.
    S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1–18 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Xu, X. Wang, Small 5, 2212–2217 (2009)CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  28. 28.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51–87 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Ju, W. Liu, C.M. Perlaki, K. Chen, C. Feng, Q. Liu, Sci. Rep. 7, 1–11 (2017)CrossRefGoogle Scholar
  30. 30.
    P. Chettri, V.S. Vendamani, A. Tripathi, M.K. Singh, A.P. Pathak, A. Tiwari, Appl. Surf. Sci. 406, 312–318 (2017)CrossRefGoogle Scholar
  31. 31.
    D. Hou, Q. Liu, X. Wang, Y. Quan, Z. Qiao, L. Yu, S. Ding, J. Materiomics 4, 256–265 (2018)CrossRefGoogle Scholar
  32. 32.
    C.H. Chuang, Y.F. Wang, Y.C. Shao, Y.C. Yeh, D.Y. Wang, C.W. Chen, J.W. Chiou, S.C. Ray, W.F. Pong, L. Zhang, J.F. Zhu, J.H. Guo, Sci. Rep. 4, 1–7 (2014)Google Scholar
  33. 33.
    S. Sang, D. Li, H. Zhang, Y. Sun, A. Jian, RSC Adv. 7, 21618 (2017)CrossRefGoogle Scholar
  34. 34.
    Y.T. Yew, A. Ambrosi, M. Pumera, Sci. Rep. 6, 33276 (2016)CrossRefGoogle Scholar
  35. 35.
    S.S.B. Moram, C. Byram, S.N. Shibu, B.M. Chilukamarri, V.R. Soma, ACS Omega 3, 8190 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Zhao, H. Lui, D.I. Mclean, H. Zeng, Appl. Spectrosc. 61, 1225–1232 (2007)CrossRefGoogle Scholar
  37. 37.
    L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, S. Mohajerzadeh, M. Fathipour, Sci. Rep. 7, 1–13 (2017)CrossRefGoogle Scholar
  38. 38.
    G. Xiao, Y. Li, W. Shi, L. Shen, Q. Chen, L. Huang, Appl. Surf. Sci. 404, 334–341 (2017)CrossRefGoogle Scholar
  39. 39.
    Z. Fan, T. Wu, X. Xu, Sci. Rep. 7, 1–15 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Solid State Physics LaboratoryTimarpurIndia
  2. 2.Centre for Fire, Explosive and Environment SafetyTimarpurIndia
  3. 3.Department of PhysicsIndian Institute of Technology DelhiHauz KhasIndia

Personalised recommendations