Advertisement

High-performance KNN-based ceramics: inter-granular coupling effect

  • Kaidong Zhang
  • Ting Zheng
  • Jiagang WuEmail author
Article
  • 8 Downloads

Abstract

In order to achieve the long-term objective of high-performance KNN-based ceramics, BiMnO3-modified lead-free KNN-based ceramics were fabricated by conventional solid-state method in this work. The R–O–T multi-phases coexistence and the absence of Sb doping lead to a large piezoelectricity (d33 = 440 pC/N), a high Curie temperature (TC = 310 °C), and a good in situ temperature stability (d33 is more than 300 pC/N below 100 °C). Based on the high performance, the effects of phase structure and microstructure on electrical properties were carried out by different sintering methods. All the results indicate that phase structure plays a major role on the excellent performance. And the sample with bimodal grain size distribution has a better electrical response than the one with uniform coarse grain size distribution, which can be elucidated by the inter-granular coupling effect. For the sample with bimodal grain size distribution, the large grains endure weaker inter-granular constraints from the surrounding refined grains, while much stronger constraints exist in the sample with uniformly coarse grains.

Notes

Acknowledgement

The authors sincerely appreciate the support of the National Science Foundation of China (NSFC No. 51722208), the Key Technologies Research and Development Program of Sichuan Province (2018JY0007).

References

  1. 1.
    S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)CrossRefGoogle Scholar
  2. 2.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Takao, T. Tani et al., Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)CrossRefGoogle Scholar
  5. 5.
    G.Z. Zang, J.F. Wang, H.C. Chen et al., Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88(21), 212908 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121–4123 (2004)CrossRefGoogle Scholar
  7. 7.
    T. Zheng, J. Wu, D. Xiao et al., Strong piezoelectricity in (1 − x)(K0.4Na0.6)(Nb0.96Sb0.04)O3xBi0.5K0.5Zr1−ySnyO3 lead-free binary system: identification and role of multiphase coexistence. ACS Appl. Mater. Interfaces. 7(10), 5927–5937 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Wang, J.F. Li, J.J. Zhou, High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl. Phys. Express 4(6), 061501 (2011)CrossRefGoogle Scholar
  9. 9.
    H.Y. Park, C.W. Ahn, H.C. Song et al., Microstructure and piezoelectric properties of 0.95 (Na0.5K0.5)NbO3−0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(6), 062906 (2006)CrossRefGoogle Scholar
  10. 10.
    Q. Chen, Z. Peng, X. Yue et al., Effect of Sb5+ on the properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ferroelectrics 404(1), 76–81 (2010)CrossRefGoogle Scholar
  11. 11.
    K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Func. Mater. 20(12), 1924–1929 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Zhang, X. Wang, X. Cheng et al., Enhanced d 33 value in (1 − x) [(K0.50Na0.50)0.97Li0.03Nb0.97Sb0.03O3] − xBaZrO3 lead-free ceramics with an orthorhombic–rhombohedral phase boundary. J. Alloy. Compd. 581, 446–451 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Zuo, X. Fang, C. Ye, Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl. Phys. Lett. 90(9), 092904 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Tao, J. Wu, D. Xiao et al., High strain in (K, Na)NbO3-based lead-free piezoceramics. ACS Appl. Mater. Interfaces. 6(22), 20358–20364 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Rout, K.S. Moon, J. Park et al., High-temperature X-ray diffraction and Raman scattering studies of Ba-doped (Na0.5Bi0.5)TiO3 Pb-free piezoceramics. Curr. Appl. Phys. 13(9), 1988–1994 (2013)CrossRefGoogle Scholar
  17. 17.
    W. Wu, D. Xiao, J. Wu et al., Polymorphic phase transition-induced electrical behavior of BiCoO3-modified (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. J. Alloy. Compd. 509(29), L284–L288 (2011)CrossRefGoogle Scholar
  18. 18.
    R. Wang, R.J. Xie, K. Hanada et al., Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (Na, K) NbO3–ATiO3 solid solutions. J. Electroceram. 21(1–4), 263–266 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Wu, Y. Wang, H. Wang, Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics. RSC Advances 4(110), 64835–64842 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Wang, J. Wu, D. Xiao et al., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Wang, B. Malič, J. Wu, Shifting the phase boundary: potassium sodium niobate derivates. MRS Bull. 43(8), 607–611 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Tao, H. Wu, Y. Liu et al., Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141(35), 13987–13994 (2019)CrossRefGoogle Scholar
  23. 23.
    E. Buixaderas, V. Bovtun, M. Kempa et al., Broadband dielectric response and grain-size effect in K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 107(1), 014111 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Tao, J. Wu, H. Wang, Modification of strain and piezoelectricity in (K, Na)NbO3–(Bi, Na)HfO3 lead-free ceramics with high Curie temperature. J. Alloy. Compd. 684, 217–223 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, Sintering and properties of lead-free (K, Na, Li)(Nb, Ta, Sb)O3 ceramics. J. Eur. Ceram. Soc. 27(13–15), 4125–4129 (2007)CrossRefGoogle Scholar
  26. 26.
    W. Liang, W. Wu, D. Xiao et al., Construction of new morphotropic phase boundary in 0.94 (K0.4−xNa0.6BaxNb1−xZrx)O3−0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46(21), 6871–6876 (2011)CrossRefGoogle Scholar
  27. 27.
    X. Lv, J. Wu, D. Xiao et al., (1 − x)(K0.48Na0.52)(Nb0.95−yzTazSby)O3−xBi0.5(Na0.82K0.18)0.5ZrO3 lead-free ceramics: composition dependence of the phase boundaries and electrical properties. Dalton Trans. 44(10), 4440–4448 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Wang, F.Z. Yao, W. Jo et al., Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv. Func. Mater. 23(33), 4079–4086 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Wang, K. Wang, F. Yao et al., Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J. Am. Ceram. Soc. 98(7), 2177–2182 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Yin, Y. Wang, Y. Zhang et al., Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites. Acta Mater. 158, 269–277 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduChina

Personalised recommendations