Advertisement

One-step synthesis of magnetic recoverable Ag2S/Fe3O4/MoS2 nanocomposites for enhanced visible light photocatalysis

  • Meng-Jie Chang
  • Wen-Na Cui
  • Jun LiuEmail author
  • Zhen-Min Luo
  • Meng Sun
  • Lei Qiu
  • Si-Meng Fan
Article
  • 15 Downloads

Abstract

A novel magnetic Ag2S/Fe3O4/MoS2 hybrid nanostructure was facilely fabricated by one-step hydrothermal synthesis of MoS2 in the presence of satellite structured Ag/Fe3O4 nanoparticles (NPs), in which process Ag was vulcanized into Ag2S NPs concurrent with the production of MoS2. As a result, flower-like MoS2 nanostructures with only several layers in thickness uniformly attached with high-crystallized Ag2S and Fe3O4 NPs were synthesized from the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results. The Ag2S/Fe3O4/MoS2 hybrids exhibit stronger visible light absorption due to the narrow band gaps of Ag2S and MoS2 component. The obtained Ag2S/Fe3O4/MoS2 hybrid nanostructures can be collected and separated with a magnet conveniently. Moreover, the catalytic performance toward decomposition of Rhodamine B (RhB) can be remarkably improved to 73.3% by Ag2S/Fe3O4/MoS2-1 hybrids compared with the Fe3O4/MoS2-1 of 39.9% within 120 min visible light illumination due to the formation of semiconductor interface.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501140, 21403165).

References

  1. 1.
    X. Yang, D. Wang, ACS Appl. Energy Mater. 1, 6657–6693 (2018)CrossRefGoogle Scholar
  2. 2.
    G. Liu, L. Ma, L.C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, H.M. Cheng, Joule 2, 1095–1107 (2018)CrossRefGoogle Scholar
  3. 3.
    T. Hisatomi, K. Domen, Nat. Catal. 2, 387–399 (2019)CrossRefGoogle Scholar
  4. 4.
    D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner, Nat. Energy 2, 17021 (2017)CrossRefGoogle Scholar
  5. 5.
    S.M. Bahauddin, H. Robatjazi, I. Thomann, ACS Photon. 3, 853–862 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, B. Mi, Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Han, S. Liu, N. Zhang, Y.-J. Xu, Z.R. Tang, Appl. Catal. B 202, 298–304 (2017)CrossRefGoogle Scholar
  8. 8.
    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Chem. Rev. 118, 6409–6455 (2018)CrossRefGoogle Scholar
  10. 10.
    Y.J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.T. Yu, Z. Zou, Appl. Catal. B 246, 120–128 (2019)CrossRefGoogle Scholar
  11. 11.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527–1536 (2016)CrossRefGoogle Scholar
  12. 12.
    J.R. Ansari, N. Singh, S. Mohapatra, R. Ahmad, N.R. Saha, D. Chattopadhyay, M. Mukherjee, A. Datta, Appl. Surf. Sci. 463, 573–580 (2019)CrossRefGoogle Scholar
  13. 13.
    M. Basu, R. Nazir, C. Mahala, P. Fageria, S. Chaudhary, S. Gangopadhyay, S. Pande, Langmuir 33, 3178–3186 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Wang, P. Ju, W. Li, Y. Zhao, X. Han, Dalton Trans. 46, 483–490 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Wu, Y. Zhou, W. Nie, P. Chen, J. Nanopart. Res. 20, 7 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Kosmala, D. Mosconi, G. Giallongo, G.A. Rizzi, G. Granozzi, ACS Sustain. Chem. Eng. 6, 7818–7825 (2018)CrossRefGoogle Scholar
  17. 17.
    X. Xia, X. Zhao, W. Ye, C. Wang, Electrochim. Acta 142, 173–181 (2014)CrossRefGoogle Scholar
  18. 18.
    L. Bai, X. Cai, J. Lu, L. Li, S. Zhong, L. Wu, P. Gong, J. Chen, S. Bai, ChemCatChem 10, 2107–2114 (2018)CrossRefGoogle Scholar
  19. 19.
    M.J. Chang, H. Wang, H.L. Li, J. Liu, H.L. Du, J. Mater. Sci. 53, 3682–3691 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, H. Ding, Y. Liu, S. Pan, Y. Luo, G. Li, J. Mater. Chem. 22, 10779–10786 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Amarjargal, L.D. Tijing, I.T. Im, C.S. Kim, Chem. Eng. J. 226, 243–254 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Lin, J. Wang, L. Guo, F. Fu, J. Phys. Chem. C 119, 13658–13664 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Amarjargal, L.D. Tijing, H.R. Pant, C.H. Park, C.S. Kim, Curr. Appl. Phys. 12, 1106–1112 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, M. Sun, Y. Fang, S. Sun, J. He, J. Mater. Sci. 51, 779–787 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meng-Jie Chang
    • 1
  • Wen-Na Cui
    • 1
  • Jun Liu
    • 1
    Email author
  • Zhen-Min Luo
    • 2
  • Meng Sun
    • 1
  • Lei Qiu
    • 1
  • Si-Meng Fan
    • 1
  1. 1.Department of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.College of Safety Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations