Improved room-temperature multiferroicity in Co-doped Aurivillius Sr0.5Bi5.5Fe1.5Ti3.5O18 ceramics

  • Yuxi Lu
  • Hui SunEmail author
  • Zhifeng Wang
  • Xi Xie
  • Tiaoshu Yao
  • Jianlin Wang
  • Yajun Qi
  • Xiaobing Chen
  • Yalin Lu


Multiferroic Sr0.5Bi5.5Fe1.5−xCoxTi3.5O18 (0 ≤ x ≤ 0.5, SBFCT-x) ceramics with layered perovskite structure were successfully prepared by the sol–gel auto-combustion method. The coexistence of ferroelectricity and ferromagnetism was observed at room temperature (RT) for all Co-doped samples. Co substitution can not only remarkably improve ferroelectricity but also enhance the ferromagnetism obviously. In particular, the SBFCT-0.4 sample shows the highest remnant magnetization (2Mr) ~ 1.82 emu/g and the largest remnant polarization (2Pr) ~ 24.4 μC/cm2. Furthermore, dielectric anomalies (x = 0.2–0.5) have been found, which can be ascribed to the long-range migration of oxygen vacancies. The effects of Co doping on ferroelectric, magnetic, and dielectric properties were discussed. The SBFCT-0.4 sample was also found to exhibit the magnetoelectric (ME) effect detectable under a low response magnetic field at RT. And the obvious magnetocapacitance (MC) performance was also observed at and above RT (373 K), which is important to potential applications in sensor technology and memory devices.



This work was supported by National Science Foundation of China (Grant Nos. 51402256, 51472078 and 11374227), Natural Science Foundation of Jiangsu Province, China (No. BK 20161409), and Natural Science Foundation of Higher Education Institutions of Jiangsu Province, China (Grant No. 12KJB140013).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10854_2019_2614_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 152 kb)


  1. 1.
    H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N. Mathur, J. Scott, Multiferroic and magnetoelectric materials. Nature (London) 442, 759–765 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Ramesh, N. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Catalan, J. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Aurivillius, Dielectric relaxation in layered oxides of the Aurivillius phase family. Ark. Kemi 1, 463–470 (1949)Google Scholar
  6. 6.
    A. Snedden, C. Hervoches, P. Lightfoot, Ferroelectric phase transitions in SrBi2Nb2O9 and Bi5Ti3FeO15: a powder neutron diffraction study. Phys. Rev. B 67, 092192 (2003)CrossRefGoogle Scholar
  7. 7.
    A.V. Knyazev, M. Mączka, O.V. Krasheninnikova, M. Ptak, E.V. Syrov, Isodimorphism in a binary system BaBi4Ti4O15-CaBi4Ti4O15. Mater. Res. Bull. 108, 163–169 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Kim, M. Miyayama, H. Yanagida, Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater. Res. Bull. 31, 121–131 (1996)CrossRefGoogle Scholar
  9. 9.
    B. Park, S. Hyun, S. Bu, T. Noh, J. Lee, H. Kim, T. Kim, W. Jo, Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907–1909 (1999)CrossRefGoogle Scholar
  10. 10.
    B. Park, B. Kang, S. Bu, T. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999)CrossRefGoogle Scholar
  11. 11.
    X. Mao, W. Wang, X. Chen, Y. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 95, 082901 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Li, Y. Huang, G. Rao, G. Liu, J. Luo, J. Chen, J. Liang, Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl. Phys. Lett. 96, 222903 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Srinivas, S. Suryanarayana, G. Kumar, K. Mahesh, Magnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18. J. Phys. 11, 3335–3340 (1999)Google Scholar
  14. 14.
    S. Suryanarayana, A. Srinivas, R. Singh, Magnetoelectric materials: some recent results and possible applications. Proc. Spie 3903, 232–265 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Bucko, J. Polnar, J. Przewozik, J. Zukrowski, C. Kapusta, Magnetic properties of the Bi6Fe2Ti3O18 Aurivillius phase prepared by hydrothermal method. Adv. Sci. Technol. 67, 170–175 (2010)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, J. Yang, X. Tang, L. Yin, X. Zhu, J. Dai, Y. Sun, Multiferroic properties of Aurivillius phase Bi6Fe2-xCoxTi3O18 thin films prepared by a chemical solution deposition route. Appl. Phys. Lett. 101, 122402 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Yuan, J. Yang, J. Chen, X. Zuo, L. Yin, X. Tang, X. Zhu, J. Dai, W. Song, Y. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3−2xNbxCoxO18 (0 ≤ x≤0.4). Appl. Phys. Lett. 104, 062413 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Sun, Y. Huang, G. Wang, J. Wang, Z. Fu, R. Peng, R. Knize, Y. Lu, Nanoscale structural modulation and enhanced room-temperature multiferroic properties. Nanoscale 6, 13494–13500 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Kan, H. Ogawa, Y. Inami, T. Moriyama, Synthesis and ferroelectric properties of bismuth layer-structured (Bi7-xSrx)(Fe3-xTi3+x)O21 solid solutions. Physica B 406, 3170–3174 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Wang, Z. Fu, R. Peng, M. Liu, S. Sun, H. Huang, L. Li, R. Knize, Y. Lu, Low magnetic field response single-phase multiferroics under high temperature. Mater. Horiz. 2, 232–236 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Wang, L. Li, R. Peng, Z. Fu, M. Liu, Y. Lu, Structural evolution and multiferroics in Sr-doped Bi7Fe1.5Co1.5Ti3O21 ceramics. J. Am. Ceram. Soc. 98, 1528–1535 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Mao, W. Wang, H. Sun, X. Chen, Y. Lu, Structural, magnetic and ferroelectric properties of Bi5FeTi3O15 and Bi5Fe0.5Co0.5Ti3O15 ceramics. Integr. Ferroelectr. 132(1), 16–21 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Parida, R. Parida, A. Panda, Multi-ferroic and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5) O3 solid solution. J. Alloy. Compd. 696, 338–344 (2016)CrossRefGoogle Scholar
  24. 24.
    C. Shao, Y. Lu, D. Wang, Y. Li, Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics. J. Eur. Ceram. Soc. 32, 3781–3789 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Kojima, R. Imaizumi, S. Hamazaki, M. Takashige, Raman scattering study of bismuth layer-structure ferroelectrics. Jpn. J. Appl. Phys. 33, 5559–5564 (1994)CrossRefGoogle Scholar
  26. 26.
    P. Graves, G. Hua, S. Myhra, J. Thompson, The Raman modes of the aurivillius phases: temperature and polarization dependence. J. Solid State Chem. 114, 112–122 (1995)CrossRefGoogle Scholar
  27. 27.
    J. Zhu, X. Chen, J. He, J. Shen, Investigations on Raman and X-ray photoemission scattering patterns of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics. Phys. Lett. A 362, 471–475 (2007)CrossRefGoogle Scholar
  28. 28.
    R. Ti, X. Lu, J. He, F. Huang, H. Wu, F. Mei, M. Zhou, Y. Li, T. Xu, J. Zhu, Multiferroic properties and magnetoelectric coupling in Fe/Co co-doped. J. Mater. Chem. C 3, 11868–11873 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Xiao, H. Zhang, Y. Xue, Z. Lu, X. Chen, P. Su, F. Yang, X. Zeng, The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics. Ceram. Int. 41, 1087–1092 (2015)CrossRefGoogle Scholar
  30. 30.
    K. Kim, X-ray-photoelectron spectroscopic studies of the electronic structure of CoO. Phys. Rev. B 11, 2177 (1975)CrossRefGoogle Scholar
  31. 31.
    B. Tan, K. Klabunde, P. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 113, 855 (1991)CrossRefGoogle Scholar
  32. 32.
    F. Huang, X. Lu, Z. Wang, W. Lin, Y. Kan, F. Bo, W. Cai, J. Zhu, Impact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin films. Appl. Phys. A 97, 699–704 (2009)CrossRefGoogle Scholar
  33. 33.
    F. Huang, Z. Jiang, X. Lu, R. Ti, H. Wu, Y. Kan, J. Zhu, Nonmonotonic variation of aging behavior in Fe-doped BaTiO3 ceramics. Appl. Phys. Lett. 105, 022904 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Wang, H. Deng, X. Meng, H. Cao, W. Zhou, P. Shen, Y. Zhang, P. Yang, J. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2−xCox/2Nix/2Ti3O18. Ceram. Int. 43, 8792–8799 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Xiong, J. Yang, Y. Qin, W. Huang, X. Tang, L. Yin, W. Song, J. Dai, X. Zhu, Y. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2−xNixTi3O18 (0 ≤ x≤1). Ceram. Int. 43, 4405–4410 (2017)CrossRefGoogle Scholar
  36. 36.
    X. Zuo, J. Yang, D. Song, B. Yuan, X. Tang, K. Zhang, X. Zhu, W. Song, J. Dai, Y. Sun, Magnetic, dielectric, and magneto-dielectric properties of rare-earth substituted Aurivillius phase Bi6Fe1.4Co0.6Ti3O18. J. Appl. Phys. 116, 154102 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRefGoogle Scholar
  38. 38.
    I. Sergienko, E. Dagotto, Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Lomanova, V. Semenov, V. Panchuk, V. Gusarov, Structural changes in the homologous series of the Aurivillius phases Bin+1Fen-3Ti3O3n+3. J. Alloy. Compd. 528, 103–108 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Birenbaum, C. Ederer, Potentially multiferroic Aurivillius phase Bi5FeTi3O15:cation site preference, electric polarization, and magnetic coupling from first principles. Phys. Rev. B 90, 214109 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Yu, B. Yu, Y. Liu, P. Zhou, J. Jiang, K. Liang, Y. Lu, H. Sun, X. Chen, Z. Ma, T. Zhang, C. Huang, Y. Qi, Enhancement of multiferroic properties of Aurivillius Bi5Ti3FeO15 ceramics by Co doping. Ceram. Int. 43, 14996–15001 (2017)CrossRefGoogle Scholar
  42. 42.
    J. Reimers, J. Greedan, C. Stager, M. Bjorgvinnsen, M. Subramanian, Short-range magnetic ordering in the highly frustrated pyrochlore systems FeF3 and Mn2Sb2O7. Phys. Rev. B 43, 5692–5697 (1991)CrossRefGoogle Scholar
  43. 43.
    H. Zhao, H. Kimura, Z. Cheng, M. Osada, J. Wang, X. Wang, S. Dou, Y. Liu, J. Yu, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci. Rep. 4, 5255 (2014)CrossRefGoogle Scholar
  44. 44.
    Z. Lei, T. Chen, W. Li, M. Liu, W. Ge, Y. Lu, Cobalt-substituted seven-layer Aurivillius Bi8Fe4Ti3O24 Ceramics: enhanced ferromagnetism and ferroelectricity. Crystals 7, 76 (2017)CrossRefGoogle Scholar
  45. 45.
    X. Mao, H. Sun, W. Wang, X. Chen, Y. Lu, Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 102, 072904 (2013)CrossRefGoogle Scholar
  46. 46.
    E. Salje, U. Bismayer, B. Wruck, J. Hensler, Influence of lattice imperfections on the transition temperatures of structural phase transitions: the plateau effect. Phase Transit. 35, 61–74 (1991)CrossRefGoogle Scholar
  47. 47.
    J. Fisher, D. Rout, K. Moon, S. Kang, High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120, 263–271 (1991)CrossRefGoogle Scholar
  48. 48.
    Y. Wu, T. Yao, Y. Lu, B. Zou, X. Mao, F. Huang, H. Sun, X. Chen, Magnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15. J. Mater. Sci. 52, 1–9 (2017)CrossRefGoogle Scholar
  49. 49.
    C. Chen, S. Hou, X. Mao, X. Chen, Ferroelectric and magnetic properties of Co doping Bi6Fe2Ti3O18 ceramics. Mater. Sci. Forum 745–746, 142–145 (2013)CrossRefGoogle Scholar
  50. 50.
    J. Liu, W. Bai, J. Yang, W. Xu, Y. Zhang, T. Lin, X. Meng, C. Duan, X. Tang, J. Chu, The Cr-substitution concentration dependence of the structural, electric and magnetic behaviors for Aurivillius Bi5Ti3FeO15 multiferroic ceramics. J. Appl. Phys. 114, 112903 (2013)Google Scholar
  51. 51.
    S. Ahn, Y. Noguchi, M. Miyayama, T. Kudo, Structural and electrical characterization of Bi5Ti3Fe1–xMnxO15 system. Mater. Res. Bull. 35, 825–834 (2000)CrossRefGoogle Scholar
  52. 52.
    J. Kim, C. Raghavan, S. Kim, Structural, electrical and ferroelectric properties of acceptor-doped Na0.5Bi4.5Ti4O15 thin films prepared by a chemical solution deposition method. Ceram. Int. 41, 1567–1571 (2015)CrossRefGoogle Scholar
  53. 53.
    S.V. Suryanarayana, Magnetoelectric interaction phenomena in materials. Bull. Mater. Sci. 17, 1259–1270 (1994)CrossRefGoogle Scholar
  54. 54.
    X. Zhang, Y. Sui, X. Wang, J. Mao, R. Zhu, Y. Wang, Z. Wang, Y. Liu, W. Liu, Multiferroic and magnetoelectric properties of single-phase Bi0.85La0.1Ho0.05FeO3 ceramics. J. Alloy. Compd. 509, 5908–5912 (2011)CrossRefGoogle Scholar
  55. 55.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites. Phys. Rev. B 67, 014418 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics Science and TechnologyYangzhou UniversityYangzhouChina
  2. 2.Guangling College of Yangzhou UniversityYangzhouChina
  3. 3.Testing CenterYangzhou UniversityJiangsuChina
  4. 4.National Laboratory of Solid State Microstructures and Department of PhysicsNanjing UniversityNanjingChina
  5. 5.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  6. 6.Department of Materials Science and EngineeringHubei UniversityWuhanChina

Personalised recommendations