Nanoporous transition metal sulfide (Cd–CuS) active electrode material for electrochemical energy storage device

  • D. GeethaEmail author
  • J. William Brown
  • P. S. Ramesh
  • Surekha Podili


Electrochemical energy storage devices are today’s need for present and future utility, where high energy and power density are combined in the same material. Supercapacitors offer high energy density at high charge–discharge rates. Transition metal sulfides have been tried as a new type of electrode materials for supercapacitor, and good performance has been proved. Cadmium-doped CuS nanostructures have been prepared via a sample hydrothermal process at 130 °C. Nanocomposites of cadmium-doped CuS have been the focus of intensive study due to their potential applications in diverse fields. The nanostructures were characterized by XRD, FTIR, SEM/EDS, and TEM. The XRD pattern reveals that the Cd nanoparticle-incorporated CuS shows crystallite nature, and crystallinity increases with the addition of cadmium on CuS. Electrochemical analysis was performed using a 2M KOH electrolyte in the technique called CV and EIS study. Cd–CuS exhibits hexagonal architecture and the specific capacitance is calculated as 458 F g−1 at 5 mV s−1 scan rate. The high utility of pseudocapacitive Cd–CuS is achieved only in its highest doping concentration of cadmium on CuS. Hence, this type of electrode material may get wide utility range in future energy storage devices.



The authors appreciatively thank the financial support of the University Grants Commission (UGC), India, (No. F. No. 43-533/2014 (SR).


  1. 1.
    J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu, L. Han, X. Liu, J.K. Kim, Y. Luo, Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3, 9769–9776 (2015)CrossRefGoogle Scholar
  2. 2.
    B. Hertzberg, A. Alexeev, G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453–9456 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Zhang, Y. Zhang, J. Yu, D. Yang, Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. J. Phys. Chem. C 112, 13390–13394 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Dumbrava, C. Badea, G. Prodan, V. Ciupina, Synthesis and characterization of cadmium sulfide obtained at room temperature. Chalcogenide Lett. 2, 111–118 (2010)Google Scholar
  6. 6.
    B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett. 8, 177–185 (2011)Google Scholar
  7. 7.
    P. Liska, K.R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H.M. Upadhyaya, A.N. Tiwari, Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Appl. Phys. Lett. 88(20), 203103 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Karunakaran, S. Senthilvelan, Solar photocatalysis: oxidation of aniline on CdS. Sol. Energy 79(5), 505–512 (2005)CrossRefGoogle Scholar
  9. 9.
    Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12(1), 1295–1298 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Bao, M. Jin, R. Lu, P. Xue, Q. Zhang, D. Wang, Y. Zhao, Surfactant-ligand co-assisted solvothermal technique for the the synthesis of different shaped CdS nanorod-based materials. J. Solid State Chem. 175(2), 322–327 (2003)CrossRefGoogle Scholar
  11. 11.
    A.M. Qin, Y.P. Fang, W.X. Zhao, H.Q. Liu, C.Y. Su, Directionally dendritic growth of metal chalcogenide crystals via mild template-free solvothermal method. J. Cryst. Growth 283, 230–241 (2005)CrossRefGoogle Scholar
  12. 12.
    F.H. Zhao, Q. Su, N.S. Xu, C.R. Ding, M.M. Wu, Selectively hydrothermal and solvothermal growth of CdS nanospheres and nanorods: a facile way to tune finely optical properties. J. Mater. Sci. 41(5), 1449–1454 (2006)CrossRefGoogle Scholar
  13. 13.
    X. Liu, A facile route to preparation of sea-urchinlike cadmium sulfide nanorod-based materials. Mater. Chem. Phys. 91(1), 212–216 (2005)CrossRefGoogle Scholar
  14. 14.
    G. Li, L. Jiang, H. Peng, B. Zhang, Self-assembled cadmium sulfide microspheres from nanorods and their optical optical properties. Mater. Lett. 62(12–13), 1881–1883 (2008)CrossRefGoogle Scholar
  15. 15.
    X.H. Yang, Q.S. Wu, L. Li, Y.P. Ding, G.X. Zhang, Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloids Surf. A 264, 172–178 (2005)CrossRefGoogle Scholar
  16. 16.
    X. Di, S.K. Kansal, W. Deng, Preparation, characterization and photocatalytic activity of flowerlike CdS nanostructures. Sep. Purif. Technol. 68, 61–64 (2009)CrossRefGoogle Scholar
  17. 17.
    R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998)CrossRefGoogle Scholar
  18. 18.
    M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Colfen, M. Antonietti, Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem. Mater. 16, 1202–1208 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Surekha, D. Geetha, P.S. Ramesh, One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior. J. Mater. Sci. 28, 15387–15397 (2017)Google Scholar
  20. 20.
    P. Wang, Y. Gao, P. Li, X. Zhang, H. Niu, Z. Zheng, Doping Zn2+ in CuS nanoflowers into chemically homogeneous Zn0.49Cu0.50S1.01 superlattice crystal structure as high-efficiency n-type photoelectric semiconductors. Appl. Mater. Interfaces 8, 15820–15827 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Liying, X. Yi, Z. Xiuwen, L. Xiang, Z. Guien, Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. J. Cryst. Growth 260, 494–499 (2004)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, J. Lu, Z. Tong, B. Lin, L. Zhou, Facile synthesis of CdS nanocrystals using thioglycolic acid as a sulfur source and stabilizer in aqueous solution. Bull. Chem. Soc. Ethiop. 25, 393–398 (2011)Google Scholar
  23. 23.
    A. Sabah, S.A. Siddiqi, S. Ali, Fabrication and characterization of CdS nanoparticles annealed by using different radiations. World Acad. Sci. Eng. Technol. 69, 82–88 (2010)Google Scholar
  24. 24.
    C.O. Dwyer, V. Lavayen, N. Mirabal, M.A. Santa Ana, E. Benaventa, S. Ormazabal, G. Gonzalez, Z. Lopez, O. Schoops, U. Wooggon, C.M. Sotomayor Torres, Surfactant-mediated variation of band-edge emission in CdS nanocomposites. Photonics Nanostruct. 5(2–3), 45–52 (2007)Google Scholar
  25. 25.
    V. Singh, P.K. Sharma, P. Chauhan, Surfactant mediated phase transformation of CdS nanoparticles. Mater. Chem. Phys. 121, 202–207 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 128, 7222–7229 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Banerjee, R. Jayakrishnan, P. Ayyub, Effect of size-induced structural transformation on the band gap of CdS nanoparticles. J. Phys. 12, 10647–10654 (2000)Google Scholar
  28. 28.
    S.Q. Sun, T. Li, Synthesis and characterization of CdS nanoparticles and nanorods via solvo-hydrothermal route. Cryst. Growth Des. 7(11), 2367–2371 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Pandey, M.T. Sebastian, P. Krishna, X-ray diffraction study of the 2H to 3C solid state transformation in vapour grown single crystals of ZnS. Phys. Status Solidi A 71(2), 633–640 (1982)CrossRefGoogle Scholar
  30. 30.
    C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Size dependence of structural metastability in semiconductor nanocrystals. Science 276(5311), 398–401 (1997)CrossRefGoogle Scholar
  31. 31.
    S.H. Tolbert, C.C. Landry, G.D. Stucky, B.F. Chmelka, P. Norby, J.C. Hanson, A. Monnier, Phase transitions in mesostructured silica/surfactant composites: surfactant packing and the role of charge density matching. Chem. Mater. 13, 2247–2256 (2001)CrossRefGoogle Scholar
  32. 32.
    Q. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 8, 1147–1160 (1996)CrossRefGoogle Scholar
  33. 33.
    E.J.H. Lee, C. Ribeiro, E. Longo, E.R. Leite, Oriented attachment: an effective mechanisim in the formation of anisotropic nanocrystals. J. Phys. Chem. B 109, 20842–20846 (2005)CrossRefGoogle Scholar
  34. 34.
    P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, T. Pradeep, Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev. 2, 5883–5945 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv. Mater. 16, 436–439 (2004)CrossRefGoogle Scholar
  36. 36.
    Z.R. Khan, M. Zulfequar, M.S. Khan, Chemical synthesis of CdS nanoparticles and their optical and dielectric studies. J. Mater. Sci. 46, 5412–5416 (2011)CrossRefGoogle Scholar
  37. 37.
    H.T. Boey, W.L. Tan, N.H.H.A. Bakar, J. Ismail, Formation and morphology of colloidal chitosan-stabilized copper sulfides. J. Phys. Sci. 18, 87–101 (2007)Google Scholar
  38. 38.
    Natarajan Karikalan, Raj Karthik, Shen-Ming Chen, Chelladurai Karuppiah, Arumugam Elangovan, Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep. 7, 2494 (2017)CrossRefGoogle Scholar
  39. 39.
    E. Cato, A. Rossi, N.C. Scherrer, E.S. Ferreira, An XPS study into sulphur speciation in blue and green ultramarine. J. Cult. Herit. 29, 30–35 (2018)CrossRefGoogle Scholar
  40. 40.
    D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, Nanostructured cadmium sulfide thin films by XPS. Surf. Sci. Spectra 9, 46–53 (2002)CrossRefGoogle Scholar
  41. 41.
    Z. Yirong, C. Xianhong, Z. Wei, X. Kaixiong, H. Weida, C. Han, Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochimica Acta 249, 64–71 (2017)CrossRefGoogle Scholar
  42. 42.
    W. Tianlei, L. Meitang, M. Hongwen, Facile synthesis of flower-like copper cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials 7, 1–11 (2017)Google Scholar
  43. 43.
    Z. Ting, X. Baoyu, Z. Liang, W. Xiong, (David) Lou, Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J. Mater. Chem. 22, 7851–7855 (2012)CrossRefGoogle Scholar
  44. 44.
    P. Hui, M. Guofu, S. Kanjun, M. Jingjing, W. Hui, L. Ziqiang, Controllable synthesis of CuS with hierarchical structures via a surfactant-free method for high-performance supercapacitors. Materials Letters 122, 25–28 (2014)CrossRefGoogle Scholar
  45. 45.
    J.H. Ke, Z.Z. Ji, X. Ke, One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance. Electrochimica Acta 149, 28–33 (2014)CrossRefGoogle Scholar
  46. 46.
    Z. Lu, Z. Zhu, X. Zheng, Y. Qiao, J. Guo, C.M. Li, Biocompatible fluorescenceenhance ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging. Nanotechnology. 22, 155604 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAnnamalai UniversityChidambaramIndia
  2. 2.Thiru Kolanjiappar Govt. Arts and Science CollegeVirudhachalamIndia

Personalised recommendations