Advertisement

Dielectric relaxation, impedance spectra, temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics

  • Wenming Shi
  • Juan DuEmail author
  • Chong Chen
  • Yanyan Wei
  • Jigong Hao
  • Wei LiEmail author
  • Peng Fu
Article
  • 17 Downloads

Abstract

Lead-free (1−x)K0.5Na0.5NbO3-x mol%Sr2MnSbO6 (abbreviated as KNN–xSMS, x = 0, 1 and 2) piezoelectric ceramics were prepared using the conventional solid-state sintering method. The effects of SMS on the microstructure and electrical properties of the KNN ceramics are investigated. 1 mol% SMS can greatly enhance the densification and increase the piezoelectric properties. Higher doping amounts will decrease the grain size and reduce electrical properties. The x = 0 and 1 samples show normal ferroelectric phase transition behavior, while the x = 2 sample exhibits diffuse phase transition behavior. Besides, after doping 1 mol% SMS, the field-induced unipolar strain and the remnant polarization vary less than undoped KNN ceramics in the temperature range of 30–160 °C. Therefore, doping SMS is an effective way to promote the temperature stability and electrical properties of KNN piezoelectric materials.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (Grant No. 2016YFB0402701), the Key R & D project of Shandong Province (Grant No. 2017GGX202008) and the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA005).

References

  1. 1.
    L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, J. Appl. Phys. 116, 044105 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, J. Appl. Phys. 114, 104105 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180–1185 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Liu, D. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116, 184104 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Hao, Z. Xu, R. Chu, Y. Zhang, P. Fu, G. Li, Q. Yin, Phys. B 404, 3391–3396 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Mater. Des. 31, 796–801 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Hao, Z. Xu, R. Chu, W. Li, G. Li, Q. Yin, J. Alloys Compd. 484, 233–238 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. A 3, 1868 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, Mater. Res. Bull. 65, 94–102 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Wang, W. Li, R. Chu, J. Hao, Z. Xu, G. Li, J. Mater. Sci.: Mater. Electron. 28, 16561–16569 (2017)Google Scholar
  13. 13.
    Y. Yang, Y. Zhou, J. Ren, Q. Zheng, K. Lam, D. Lin, J. Am. Ceram. Soc. 101, 2594–2605 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Saleem, M.S. Kim, I.S. Kim, S.J. Jeong, Ceram. Int. 42, 13960–13968 (2016)CrossRefGoogle Scholar
  15. 15.
    K. Wang, J.F. Li, N. Liu, Appl. Phys. Lett. 93, 092904 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Prog. Mater Sci. 98, 552–624 (2018)CrossRefGoogle Scholar
  17. 17.
    W.F. Bai, D.Q. Chen, Y.W. Huang, P. Zheng, J.S. Zhong, M.Y. Ding, Y.J. Yuan, B. Shen, J.W. Zhai, Z.G. Ji, Ceram. Int. 42, 7669–7680 (2016)CrossRefGoogle Scholar
  18. 18.
    W.F. Bai, J.H. Xi, J. Zhang, B. Shen, J.W. Zhai, H.X. Yan, J. Eur. Ceram. Soc. 35, 2489–2499 (2015)CrossRefGoogle Scholar
  19. 19.
    W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  20. 20.
    Y.C. Liu, Y.F. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S.T. Zhang, R.X. Wang, W.W. Cao, ACS Appl. Mater. Int. 9, 29863–29871 (2017)CrossRefGoogle Scholar
  21. 21.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1961)Google Scholar
  22. 22.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 130, 2236–2239 (1991)CrossRefGoogle Scholar
  23. 23.
    X.M. Liu, X.L. Tan, Adv. Mater. 28, 574–578 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Li, J.W. Zhai, B. Shen, S.J. Zhang, X.L. Li, F.Y. Zhu, X.M. Zhu, Adv. Mater. 30, 1705171 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRefGoogle Scholar
  26. 26.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRefGoogle Scholar
  27. 27.
    J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709 (2006)CrossRefGoogle Scholar
  28. 28.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4213 (2004)CrossRefGoogle Scholar
  29. 29.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Zhu, M.B. Ward, J. Li, S.J. Milne, Acta Mater. 90, 204–212 (2015)CrossRefGoogle Scholar
  31. 31.
    F.Z. Yao, Q. Yu, K. Wang, Q. Li, J.F. Li, RSC Adv. 4, 20062–20068 (2014)CrossRefGoogle Scholar
  32. 32.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, W.J. Wu, B. Zhang, J.G. Zhu, J. Am. Ceram. Soc. 91, 3402–3404 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Wu, Y. Wang, H. Wang, Phase boundary, poling condition. RSC Adv. 4, 64835–64842 (2014)CrossRefGoogle Scholar
  34. 34.
    Y.J. Dai, X.W. Zhang, G.Y. Zhou, Appl. Phys. Lett. 90, 262903 (2007)CrossRefGoogle Scholar
  35. 35.
    B.Y. Zhang, J.G. Wu, X.J. Cheng, X.P. Wang, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, ACS Appl. Mater. Int. 5, 7718–7725 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Adv. Mater. 28, 8519–8523 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Zheng, W.J. Wu, J.G. Wu, J.G. Zhu, D.Q. Xiao, J. Mater. Chem. C 4, 9779–9787 (2016)CrossRefGoogle Scholar
  38. 38.
    S.J. Zhang, R. Xia, T.R. Shrout, Appl. Phys. Lett. 91, 132913 (2007)CrossRefGoogle Scholar
  39. 39.
    C. Wang, T.D. Xia, X.J. Lou, S.T. Tian, J. Mater. Sci. 52, 11337–11345 (2017)Google Scholar
  40. 40.
    Z. Tan, J. Xing, L.M. Jiang, J.G. Zhu, B. Wu, Front. Mater. Sci. 11, 344–352 (2017)CrossRefGoogle Scholar
  41. 41.
    P.Q. Long, X.T. Liu, X. Long, Z.G. Yi, J. Alloy. Compd. 706, 234–243 (2017)CrossRefGoogle Scholar
  42. 42.
    M.A. Marwat, B. Xie, M. Ashtar, Y.W. Zhu, P.Y. Fan, H.B. Zhang, Ceram. Int. 44, 6843–6850 (2018)CrossRefGoogle Scholar
  43. 43.
    S.S. Dong, J. Du, Z.J. Xu, R.Q. Chu, W. Li, J.G. Hao, J.L. Liu, P. Zheng, Ceram. Int. 42, 8051–8057 (2016)CrossRefGoogle Scholar
  44. 44.
    Y.Y. Gong, X. He, C. Chen, Z.G. Yi, Ceram. Int. 45, 7173–7179 (2019)CrossRefGoogle Scholar
  45. 45.
    H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Eur. Ceram. Soc. 32, 4341–4352 (2012)CrossRefGoogle Scholar
  46. 46.
    M.R. Bafandeh, R. Gharahkhani, J.-S. Lee, J. Alloys Compd. 602, 285–289 (2014)CrossRefGoogle Scholar
  47. 47.
    D. Lin, K.W. Kwok, H.L. Chan, J. Am. Ceram. Soc. 92, 2765–2767 (2009)CrossRefGoogle Scholar
  48. 48.
    Z.Y. Cen, Y.C. Zhen, W. Feng, P.Y. Zhao, L.L. Chen, X.H. Wang, L.T. Li, J. Eur. Ceram. Soc. 38, 3136–3146 (2018)CrossRefGoogle Scholar
  49. 49.
    Z.Y. Cen, X.H. Wang, Y. Huan, L.T. Li, J. Am. Ceram. Soc. 101, 2391–2407 (2018)CrossRefGoogle Scholar
  50. 50.
    P. Jaiban, A. Watcharapasorn, R. Yimnirum, R. Guo, A. Bhalla, J. Alloys Compd. 695, 1329–1335 (2017)CrossRefGoogle Scholar
  51. 51.
    R. Ndioukane, M. Toure, D. Kobor, L. Motte, M. Pasquinelli, J. Solard, Int. J. Mod. Phys. A 9, 259–272 (2018)Google Scholar
  52. 52.
    K. Uchino, S. Nomura, Ferroelectronics 44, 55–61 (1982)CrossRefGoogle Scholar
  53. 53.
    C. Liu, L. Shi, Y.M. Lai, Y.X. Li, L.J. Jia, H. Su, J. Li, T.L. Wen, W.W. Ling, H.W. Zhang, Ceram. Int. 44, 8109–8115 (2018)CrossRefGoogle Scholar
  54. 54.
    Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004)CrossRefGoogle Scholar
  55. 55.
    Z. Sun, L.X. Li, J.T. Li, H.R. Zheng, W.J. Luo, Ceram. Int. 42, 10833–10837 (2016)CrossRefGoogle Scholar
  56. 56.
    A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, Phys. Rev. B 68, 052102 (2003)CrossRefGoogle Scholar
  57. 57.
    X.D. Qi, Y. Zhao, E.W. Sun, J. Du, K. Li, Y. Sun, B. Yang, R. Zhang, W.W. Cao, J. Eur. Ceram. Soc. 39, 4060–4069 (2019)CrossRefGoogle Scholar
  58. 58.
    E.W. Sun, X.D. Qi, Z.Y. Yuan, S.J. Sang, R. Zhang, B. Yang, W.W. Cao, L.C. Zhao, Ceram. Int. 42, 4893–4898 (2016)CrossRefGoogle Scholar
  59. 59.
    Z.H. Zhao, Y.J. Dai, F. Huang, Sustain. Mater. Technol. 17, e00092 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations