Advertisement

Fast and scalable phase change materials Ti–Sb–Te deposited by plasma-enhanced atomic layer deposition

  • Hao Wang
  • Sannian SongEmail author
  • Zhitang Song
  • Zhiguo Zhou
  • Dongning Yao
  • Shilong Lv
Article
  • 32 Downloads

Abstract

Current features of phase change memory (PCM) based on Ge2Sb2Te5 (GST) as a non-volatile memory is insufficient to meet the needs of storage class memory (SCM) such as extremely high-density, ultra-fast operating speed and long life cycle. In this study, Ti0.28Sb2Te3 (TST) device was fabricated based on atomic layer deposition (ALD) method and used as a phase change material. Due to the fast crystallization and low melting temperature of TST, the set speed can be reduced to 6 ns while the reset voltage can be decreased by 20% compared with GST-based device with the same cell structure. In addition, the ALD-deposited TST alloy showed a good gap-fill capability. These results indicate that the ALD-deposited TST film is a fast and scalable phase-change material applied to SCM.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0407500, 2017YFB0701703, 2017YFA0206101, 2017YFA0206104, 2017YFB0405601), National Natural Science Foundation of China (Grant Nos. 61874178, 61874129, 61775008), Science and Technology Council of Shanghai (Grant No. 17DZ2291300), Shanghai Sailing Program (Grant No. 19YF1456100).

References

  1. 1.
    R.F. Freitas, W.W. Wilcke, IBM J. Res. Dev. 52, 439 (2008).  https://doi.org/10.1147/rd.524.0439 CrossRefGoogle Scholar
  2. 2.
    A.L. Lacaita, A. Redaelli, Microelectron. Eng. 109, 351 (2013).  https://doi.org/10.1016/j.mee.2013.02.105 CrossRefGoogle Scholar
  3. 3.
    H.-Y. Cheng, S. Raoux, J.L. Jordan-Sweet, J. Appl. Phys. 115, 093101 (2014).  https://doi.org/10.1063/1.4867045 CrossRefGoogle Scholar
  4. 4.
    A. Bivens, P. Dube, M. Franceschini, J. Karidis, L. Lastras, M. Tsao, in 2010 IEEE International Memory Workshop (2010)Google Scholar
  5. 5.
    D. Loke, L. Shi, W. Wang et al., Nanotechnology 22, 254019 (2011).  https://doi.org/10.1088/0957-4484/22/25/254019 CrossRefGoogle Scholar
  6. 6.
    I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130 (2000).  https://doi.org/10.1063/1.373041 CrossRefGoogle Scholar
  7. 7.
    H.P. Wong, S. Raoux, S. Kim et al., Proc. IEEE 98, 2201 (2010).  https://doi.org/10.1109/JPROC.2010.2070050 CrossRefGoogle Scholar
  8. 8.
    M. Zhu, L. Wu, F. Rao et al., Appl. Phys. Lett. 104, 053119 (2014).  https://doi.org/10.1063/1.4863430 CrossRefGoogle Scholar
  9. 9.
    M. Xia, M. Zhu, Y. Wang et al., ACS Appl. Mater. Interfaces 7, 7627 (2015).  https://doi.org/10.1021/acsami.5b00083 CrossRefGoogle Scholar
  10. 10.
    M. Zhu, L. Wu, Z. Song et al., Appl. Phys. Lett. 100, 122101 (2012).  https://doi.org/10.1063/1.3695036 CrossRefGoogle Scholar
  11. 11.
    M. Zhu, M. Xia, F. Rao et al., Nat. Commun. 5, 4086 (2014).  https://doi.org/10.1038/ncomms5086 CrossRefGoogle Scholar
  12. 12.
    B.J. Choi, S. Choi, Y.C. Shin et al., J. Electrochem. Soc. 154, H318 (2007).  https://doi.org/10.1149/1.2456199 CrossRefGoogle Scholar
  13. 13.
    D.H. Im, J.I. Lee, S.L. Cho et al., in 2008 IEEE International Electron Devices Meeting (2008)Google Scholar
  14. 14.
    J.I. Lee, H. Park, S.L. Cho et al., in 2007 IEEE Symposium on VLSI Technology (2007)Google Scholar
  15. 15.
    F. Yeung, S.-J. Ahn, Y.-N. Hwang et al., Jpn. J. Appl. Phys. 44, 2691 (2005).  https://doi.org/10.1143/jjap.44.2691 CrossRefGoogle Scholar
  16. 16.
    R.-Y. Kim, H.-G. Kim, S.-G. Yoon, Appl. Phys. Lett. 89, 102107 (2006).  https://doi.org/10.1063/1.2338586 CrossRefGoogle Scholar
  17. 17.
    B.J. Choi, S. Choi, T. Eom et al., Chem. Mater. 21, 2386 (2009).  https://doi.org/10.1021/cm803369b CrossRefGoogle Scholar
  18. 18.
    A. Abrutis, V. Plausinaitiene, M. Skapas et al., Chem. Mater. 20, 3557 (2008).  https://doi.org/10.1021/cm8004584 CrossRefGoogle Scholar
  19. 19.
    J. Lee, S. Choi, C. Lee, Y. Kang, D. Kim, Appl. Surf. Sci. 253, 3969 (2007).  https://doi.org/10.1016/j.apsusc.2006.08.044 CrossRefGoogle Scholar
  20. 20.
    J.-F. Zheng, P. Chen, W. Hunks et al., MRS Proc. 1160, 1160 (2011).  https://doi.org/10.1557/PROC-1160-H14-11 CrossRefGoogle Scholar
  21. 21.
    V. Pore, T. Hatanpää, M. Ritala, M. Leskelä, J. Am. Chem. Soc. 131, 3478 (2009).  https://doi.org/10.1021/ja8090388 CrossRefGoogle Scholar
  22. 22.
    M. Ritala, V. Pore, T. Hatanpää et al., Microelectron. Eng. 86, 1946 (2009).  https://doi.org/10.1016/j.mee.2009.03.014 CrossRefGoogle Scholar
  23. 23.
    T. Suntola, Mater. Sci. Rep. 4, 261 (1989).  https://doi.org/10.1016/S0920-2307(89)80006-4 CrossRefGoogle Scholar
  24. 24.
    S. Song, D. Yao, Z. Song et al., Nanoscale Res. Lett. 10, 89 (2015).  https://doi.org/10.1186/s11671-015-0815-5 CrossRefGoogle Scholar
  25. 25.
    J. Feng, Y. Zhang, B.W. Qiao et al., Appl. Phys. A 87, 57 (2007).  https://doi.org/10.1007/s00339-006-3851-2 CrossRefGoogle Scholar
  26. 26.
    F. Rao, Z. Song, Y. Gong et al., Appl. Phys. Lett. 92, 223507 (2008).  https://doi.org/10.1063/1.2939218 CrossRefGoogle Scholar
  27. 27.
    I.S. Kim, S.L. Cho, D.H. Im et al., in 2010 Symposium on VLSI Technology (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Micro-system and Information Technology, Chinese Academy of SciencesShanghaiChina
  2. 2.College of Chemistry and Materials ScienceShanghai Normal UniversityShanghaiChina

Personalised recommendations