Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell

  • Ting Zhang
  • Qingjun ZhouEmail author
  • Yong He
  • Chen Zhao
  • Siming Qi
  • Mingchao Wang
  • Tong Wei
  • Dongmin An


This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd1.5Pr0.5Ni1−xMxO4+δ. In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd1.5Pr0.5NiO4+δ (NPN), Nd1.5Pr0.5Ni0.9Cu0.1O4+δ (NPNCu), Nd1.5Pr0.5Ni0.9Co0.1O4+δ (NPNCo), and Nd1.5Pr0.5Ni0.95Mo0.05O4+δ (NPNMo). The crystal structure, phase stability, electrical conductivity, thermal expansion coefficient (TEC), and electrochemical performance of the oxides are systematically investigated. No chemical reactions between NPN, NPNCu, NPNCo, and NPNMo cathodes and Ce0.8Sm0.2O1.9 electrolyte are found. The average TEC values of the NPN, NPNCu, NPNCo, and NPNMo are determined to be 13.9 × 10−6 K−1, 13.6 × 10−6 K−1, 14.7 × 10−6 K−1, and 13.2 × 10−6 K−1 in the range of 30–1000 °C, close to that of the typical electrolyte materials. NPN and NPNCu cathodes exhibit very low interfacial polarization resistance value of 0.033 and 0.032 Ω cm2 at 800 °C, which translates to superior fuel cell performance, e.g., peak power density of 456 and 443 mW cm−2, respectively. The electrochemical performance, however, could be significantly degraded by the Co and Mo doping in the Ni site. The presented results demonstrate that NPN and NPNCu are promising cathode candidate for intermediate-temperature solid oxide fuel cells.



The research was financially supported by the Fundamental Research Funds for the Central Universities (201915), the National Natural Science Foundation of China and the Civil Aviation Administration of China (U1933109) and Scientific Research Project of Tianjin Education Committee (2018KJ254).


  1. 1.
    J.P.P. Huijsmans, F.P.F. van Berkel, G.M. Christie, J. Power Sources 71, 107–110 (1998)CrossRefGoogle Scholar
  2. 2.
    W. Zhou, R. Ran, Z.P. Shao, J. Power Sources 192, 231–246 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRefGoogle Scholar
  4. 4.
    L.D. Fan, B. Zhu, P.C. Su, C.X. He, Nano Energy 45, 148–176 (2018)CrossRefGoogle Scholar
  5. 5.
    C.W. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14, 1125–1144 (2010)CrossRefGoogle Scholar
  6. 6.
    J.A. Kilner, M. Burriel, Annu. Rev. Mater. Res. 44, 365–393 (2014)CrossRefGoogle Scholar
  7. 7.
    J.M. Bassat, P. Odier, J.P. Loup, J. Solid State Electrochem. 110, 124–135 (1994)CrossRefGoogle Scholar
  8. 8.
    V.V. Kharton, A.A. Yaremchenko, A.L. Shaula, M.V. Patrakeev, E.N. Naumovich, D.I. Logvinovich, J.R. Frade, F.M.B. Marquesa, J. Solid State Chem. 177, 26–37 (2004)CrossRefGoogle Scholar
  9. 9.
    E. Boehm, J.-M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.-C. Grenier, Solid State Sci. 5, 973–981 (2003)CrossRefGoogle Scholar
  10. 10.
    J.A. Kilner, C.K.M. Shaw, Solid State Ion. 154, 523–527 (2002)CrossRefGoogle Scholar
  11. 11.
    M.S.D. Read, M.S. Islam, G.W. Watson, F.E. Hancock, J. Mater. Chem. 11, 2597–2602 (2001)CrossRefGoogle Scholar
  12. 12.
    L. Sun, Q. Li, H. Zhao, L.H. Huo, J.C. Grenier, J. Power Sources 183, 43–48 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Lalanne, G. Prosperi, J.-M. Bassat, F. Mauvy, S. Fourcade, P. Stevens, M. Zahid, S. Diethelm, J. Van Herle, J.-C. Grenier, J. Power Sources 185, 1218–1224 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Mauvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, P. Dordor, Ph Stevens, J. Eur. Ceram. Soc. 25, 2669–2672 (2005)CrossRefGoogle Scholar
  15. 15.
    Q.J. Zhou, Y. Gao, F. Wang, D.M. An, Y. Li, Y.L. Zou, Z.P. Li, W.B. Wang, Ceram. Int. 41, 639–643 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Zhao, Q.J. Zhou, T. Zhang, L.W. Qu, X. Yang, T. Wei, Mater. Res. Bull. 113, 25–30 (2019)CrossRefGoogle Scholar
  17. 17.
    J.L. Mao, S.T. Peng, C. Zhang, S.M. Qi, J.H. Cui, Y.H. Gong, S.S. Wang, C.R. Wu, Q.J. Zhou, J. Alloys Compd. 793, 519–525 (2019)CrossRefGoogle Scholar
  18. 18.
    V.V. Kharton, A.P. Viskup, E.N. Naumovich, F.M.B. Marques, J. Mater. Chem. 9, 2623–2629 (1999)CrossRefGoogle Scholar
  19. 19.
    A.R. Cleave, J.A. Kilner, S.J. Skinner, S.T. Murphy, R.W. Grimes, Solid State Ion. 179, 823–826 (2008)CrossRefGoogle Scholar
  20. 20.
    D. Parfitt, A. Chroneos, J.A. Kilner, R.W. Grimes, Phys. Chem. Chem. Phys. 12, 6834–6836 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Ferchaud, J.-C. Grenier, Y. Zhang-Steenwinkel, M.M.A. van Tuel, F.P.F. van Berkel, J.-M. Bassat, J. Power Sources 196, 1872–1879 (2011)CrossRefGoogle Scholar
  22. 22.
    R.K. Sharma, S.K. Cheah, M. Burriel, L. Dessemond, J.M. Bassat, E. Djurado, J. Mater. Chem. A 5, 1120–1132 (2017)CrossRefGoogle Scholar
  23. 23.
    L.D. Fan, M.M. Chen, H.J. Zhang, C.Y. Wang, C.X. He, Int. J. Hydrog. Energy 42, 17544–17551 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Mauvy, C. Lalanne, J.M. Bassat, J.-C. Greniera, H. Zhao, L.H. Huo, P. Stevensc, J. Electrochem. Soc. 153, A1547–A1553 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Montenegro-Hernandez, J. Vega-Castillo, L. Mogni, A. Caneiro, Int. J. Hydrog. Energy 36, 15704–15714 (2011)CrossRefGoogle Scholar
  26. 26.
    T. Ishihara, S. Miyoshi, T. Furuno, O. Sanguanruang, H. Matsumoto, Solid State Ion. 177, 3087–3091 (2006)CrossRefGoogle Scholar
  27. 27.
    C.N. Munnings, S.J. Skinner, G. Anow, P.S. Whitfield, I.J. Davidson, Solid State Ion. 176, 1895–1901 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Cheng, Q.J. Zhou, W.D. Li, T. Wei, Z.P. Li, D.M. An, X.Q. Tong, Z.H. Ji, X. Han, J. Alloys Compd. 641, 234–237 (2015)CrossRefGoogle Scholar
  29. 29.
    J.L. Cheng, S.G. Zhang, B. Meng, J.C. Ding, X.Y. Tan, J. Alloys Compd. 742, 966–976 (2018)CrossRefGoogle Scholar
  30. 30.
    N. Han, Q. Wei, S.G. Zhang, N.T. Yang, S.M. Liu, J. Alloys Compd. 806, 153–162 (2019)CrossRefGoogle Scholar
  31. 31.
    Y.P. Wang, Q. Xu, D.P. Huang, K. Zhao, M. Chen, B.H. Kim, Appl. Surf. Sci. 423, 995–1002 (2017)CrossRefGoogle Scholar
  32. 32.
    Q.J. Zhou, F. Wang, Y. Shen, T.M. He, J. Power Sources 195, 2174–2181 (2010)CrossRefGoogle Scholar
  33. 33.
    Q.J. Zhou, T. Wei, Z.P. Li, D.M. An, X.Q. Tong, Z.H. Ji, W.B. Wang, H. Lu, L.Y. Sun, Z.Y. Zhang, K. Xu, J. Alloys Compd. 627, 320–323 (2015)CrossRefGoogle Scholar
  34. 34.
    J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson, W.J. Weber, J. Electrochem. Soc. 143, 2722–2729 (1996)CrossRefGoogle Scholar
  35. 35.
    J. Hyodo, K. Tominaga, Y.W. Ju, S. Ida, T. Ishihara, Solid State Ion. 256, 5–10 (2014)CrossRefGoogle Scholar
  36. 36.
    M.S.D. Read, M.S. Islam, F. King, F.E. Hancock, J. Phys. Chem. B 103, 1558–1562 (1999)CrossRefGoogle Scholar
  37. 37.
    Y. Hu, Y. Bouffanais, L. Almar, A. Morata, A. Tarancon, G. Dezanneau, Int. J. Hydrog. Energy 38, 3064–3072 (2013)CrossRefGoogle Scholar
  38. 38.
    J.H. Cui, Y.H. Gong, R.Z. Shao, S.S. Wang, J.L. Mao, M. Yang, W.F. Wang, Q.J. Zhou, J. Mater. Sci. 30, 5573–5579 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinPeople’s Republic of China

Personalised recommendations