The Ci(SiI)n defect in neutron-irradiated silicon

  • C. A. LondosEmail author
  • S.-R. G. Christopoulos
  • A. ChroneosEmail author
  • T. Angeletos
  • M. Potsidi
  • G. Antonaras


We report experimental results in neutron-irradiated silicon containing carbon. Initially, carbon interstitial (Ci) defects form and readily associate with self-interstitials in the course of irradiation leading to the production of Ci(SiI) defects and upon annealing to the sequential formation of Ci(SiI)n complexes. Infrared spectroscopy measurements report the detection of two localized vibrational bands at 953 and 960 cm−1 related to the Ci(SiI) defect. The thermal stability and annealing kinetics of the defect are discussed. The decay out of the two bands occurs in the temperature range of 130–200 °C. They follow second-order kinetics with an activation energy of 0.93 eV. No other bands were detected to grow in the spectra upon their annealing. Density functional theory calculations were used to investigate the structure and the energetics of the Ci(SiI) and the Ci(SiI)2 defects.



T. Angeletos is grateful to the A. S. Onassis Foundation for financial support though his Ph.D. scholarship (Grant No. G ZL 001-1/2015-2016).


  1. 1.
    W.W. Moses, Nucl. Instr. Methods Phys. Res. A 610, 11 (2009)CrossRefGoogle Scholar
  2. 2.
    L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. 4, 1548305 (2018)Google Scholar
  3. 3.
    A.H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M.T. Wade, C. Sun, S.A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C.V. Baiocco, M.A. Popović, V.M. Stojanović, R.J. Ram, Nature 556, 349 (2018)CrossRefGoogle Scholar
  4. 4.
    G. Lindstrom, Nucl. Instr. Methods Phys. Res. A 512, 30 (2003)CrossRefGoogle Scholar
  5. 5.
    H.-W. Hubers, S.G. Pavlov, V.N. Shastin, Semicond. Sci. Technol. 20, S211 (2005)CrossRefGoogle Scholar
  6. 6.
    R.C. Newman, in Defects in Silicon II, vol. 91-9, ed. by W.M. Bullis, U. Gosele, F. Shimura (Proceedings, 1991), p. 271Google Scholar
  7. 7.
    D. Tsuchiγa, K. Sueoka, H. Yamamoto, Phys. State Solidi A (2019). CrossRefGoogle Scholar
  8. 8.
    C.A. Londos, A. Andrianakis, Ε.Ν. Sgourou, V.V. Emtsev, H. Oyama, J. Appl. Phys. 109, 033508 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Simoen, S.K. Dhayalan, A. Hikavyy, R. Loo, E. Rosseel, H. Vrielinck, J. Lauwaert, ECS J. Solid State Sci. Technol. 6, P284 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Wang, A. Chroneos, E.N. Sgourou, C.A. Londos, U. Schwingenschlogl, Sci. Rep. 4, 4909 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Chroeos, E.N. Sgourou, C.A. Londos, U. Schwingenschlogl, Appl. Phys. Rev. 2, 021306 (2015)CrossRefGoogle Scholar
  12. 12.
    C.A. Londos, Physica Status Solidi 92, 609 (1985)CrossRefGoogle Scholar
  13. 13.
    C.A. Londos, Semicond. Sci. Technol. 5, 645 (1990)CrossRefGoogle Scholar
  14. 14.
    F. Zirkelbach, B. Stritzker, K. Nordlund, J.K.N. Lindner, W.G. Schmidt, E. Rauls, Phys. Rev. B 84, 064126 (2011)CrossRefGoogle Scholar
  15. 15.
    E. Simoen, S.K. Dhayalan, A. Hikavyy, R. Loo, E. Rosseel, H. Vrielinck, J. Lauwaert, ECS J. Solid State Sci. Technol. 6, P284 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Davies, Mater. Sci. Forum 38–41, 151 (1989)Google Scholar
  17. 17.
    A. Matoni, F. Bernadini, L. Colombo, Phys. Rev. B 66, 195214 (2002)CrossRefGoogle Scholar
  18. 18.
    B.C. MacEvoy, S.I. Watts, Solid State Phenom. 57–58, 221 (1997)CrossRefGoogle Scholar
  19. 19.
    R. Pinacho, P. Castrillo, M. Jaraiz, I. Martin-Bragado, J. Bartolla, H.-J. Gossmann, G.-H. Gilmer, I.-L. Benton, J. Appl. Phys. 92, 1582 (2002)CrossRefGoogle Scholar
  20. 20.
    A.E. Michael, W. Rausch, P.A. Ronsheim, R.H. Kastl, Appl. Phys. Lett. 50, 416 (1987)CrossRefGoogle Scholar
  21. 21.
    K.S. Jones, J. Liu, L. Zhang, V. Krishnamurtly, R.T. DeHoff, Nucl. Instum. Methods Phys. Res. B 106, 227 (1995)CrossRefGoogle Scholar
  22. 22.
    S. Lee, G.S. Hwang, Phys. Rev. B 78, 045204 (2008)CrossRefGoogle Scholar
  23. 23.
    S.S. Kapur, T. Sinno, Phys. Rev. B 82, 045205 (2010)CrossRefGoogle Scholar
  24. 24.
    S.S. Kapur, M. Prasad, T. Sinno, Phys. Rev. B 69, 155214 (2004)CrossRefGoogle Scholar
  25. 25.
    C.A. Londos, D.N. Aliprantis, G. Antonaras, M.S. Potsidi, T. Angeletos, J. Appl. Phys. 123, 145702 (2018)CrossRefGoogle Scholar
  26. 26.
    S.-R.G. Christopoulos, E.N. Sgourou, R.V. Vovk, A. Chroneos, C.A. Londos, Solid State Commun. 263, 19 (2017)CrossRefGoogle Scholar
  27. 27.
    M.S. Potsidi, C.A. Londos, J. Appl. Phys. 100, 033523 (2006)CrossRefGoogle Scholar
  28. 28.
    S.-R.G. Christopoulos, E.N. Sgourou, R.V. Vovk, A. Chroneos, C.A. Londos, Materials 11, 612 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Davies and R.C. Newman, in Handbook of Semiconductors, vol. 3, ed. by S. Mahajan (Elsevier, Amsterdam, 1994), p. 1557–1635Google Scholar
  30. 30.
    C.A. Londos, M.S. Potsidi, E. Stakakis, Phys. B 340–342, 551 (2003)CrossRefGoogle Scholar
  31. 31.
    S.P. Chappell, R.C. Newman, Semicond. Sci. Technol. 2, 691 (1987)CrossRefGoogle Scholar
  32. 32.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  33. 33.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. 14, 2717 (2002)Google Scholar
  34. 34.
    J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  35. 35.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  36. 36.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  37. 37.
    A. Chroneos, C.A. Londos, J. Appl. Phys. 107, 093518 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)CrossRefGoogle Scholar
  39. 39.
    E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)CrossRefGoogle Scholar
  40. 40.
    H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II Experimental Aspects (Springer, Berlin, 1983). ISBN-13:978-3-642-81834-9CrossRefGoogle Scholar
  42. 42.
    S. Ishino, F. Nakazawa, R. Hasiguti, J. Phys. Chem. Solids 24, 1033 (1963)CrossRefGoogle Scholar
  43. 43.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1994)Google Scholar
  44. 44.
    K.J. Laidler, Chemical Kinetics (Harper & Row, New York, 1987)Google Scholar
  45. 45.
    R. Radu, I. Pintilie, L.F. Makarenko, E. Fretwurst, G. Lindstroem, J. Appl. Phys. 123, 161402 (2018)CrossRefGoogle Scholar
  46. 46.
    E. Grow, F. Davis, M. Maxfield, Statistical Manual (Dover, New York, 1960), pp. 157–158Google Scholar
  47. 47.
    R.C. Newman, R. Jones, in Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic Press San Diego, 1994), p. 289Google Scholar
  48. 48.
    H. Stein, in the 2nd Internat. Conf. Neutron Transmutation Doping in Semiconductors, ed. by J. Meese (Plenum Press, New York, 1979) p. 229Google Scholar
  49. 49.
    R.C. Newman, Rep. Prog. Phys. 45, 1163 (1982)CrossRefGoogle Scholar
  50. 50.
    D.H.J. Totterdell, R.C. Newman, J. Phys. C 8, 589 (1975)CrossRefGoogle Scholar
  51. 51.
    J. Adey, J.P. Goss, R. Jones, P.R. Briddon, Phys. Rev. B 67, 245325 (2003)CrossRefGoogle Scholar
  52. 52.
    P. Varotsos, Solid State Ionics 179, 438–441 (2008)CrossRefGoogle Scholar
  53. 53.
    A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Mater. Sci. Eng., B 154–155, 72–75 (2008)CrossRefGoogle Scholar
  54. 54.
    A. Chroneos, R.V. Vovk, Solid State Ionics 274, 1–3 (2015)CrossRefGoogle Scholar
  55. 55.
    D.C. Parfitt, M.W.D. Cooper, M.J.D. Rushton, S.-R.G. Christopoulos, M.E. Fitzpatrick, A. Chroneos, RSC Adv. 6, 74018–74027 (2016)CrossRefGoogle Scholar
  56. 56.
    N.V. Sarlis, E.S. Skordas, Solid State Ionics 335, 82–85 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Solid State Physics SectionUniversity of AthensAthensGreece
  2. 2.Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK

Personalised recommendations