Advertisement

Performances of In-doped CuO-based heterojunction gas sensor

  • Huan Zhang
  • Hairong LiEmail author
  • Lina Cai
  • Qi Lei
  • Jianan Wang
  • Wenhao Fan
  • Kai Shi
  • Genliang Han
Article
  • 14 Downloads

Abstract

In this work, the pure and In-doped CuO nanostructure was successfully synthesized by a simple one-step hydrothermal method. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectric spectroscopy were employed for characterization of the structure and morphology of the as-prepared nanostructure materials. Then, the gas sensing properties of the pure and In-doped CuO nanostructure were investigated. Compared with pure CuO, the sensors based on 2 mol% In-doped CuO exhibited enhanced gas sensing and low working temperature obviously. The response to 300 ppm ethanol gas reached to 67.1 at 116 °C, which was almost 9.5 times higher than that of pure CuO. The flow and recombination of carriers at the n–p junction are the main reason for the decrease in the carrier concentration of In2O3/CuO gas sensors in reducing gas. Therefore, we believe that the change of carrier concentration and material surface caused by In doping could be responsible for the enhancement of the gas sensing properties.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61974057, 50272026) and Natural Science Foundation of Gansu Province (Grant No 17JR5RA180).

References

  1. 1.
    H. Jin, G. Sun, B. Zhang, N. Luo, Y. Li, L. Lin, H. Bala, J. Cao, Z. Zhang, Y. Wang, J. Alloys Compd. 776, 782–790 (2019)CrossRefGoogle Scholar
  2. 2.
    J.-H. Lee, Sens. Actuators B 140, 319–336 (2009)CrossRefGoogle Scholar
  3. 3.
    C. Liu, Y. Wang, P. Zhao, W. Li, Q. Wang, P. Sun, X. Chuai, G. Lu, J. Colloid Interface Sci. 505, 1039 (2017)CrossRefGoogle Scholar
  4. 4.
    U.T. Nakate, R. Ahmad, P. Patil, Y. Wang, K.S. Bhat, T. Mahmoudi, Y.T. Yu, E.-K. Suh, Y.-B. Hahn, J. Alloys Compd. 797, 456–464 (2019)CrossRefGoogle Scholar
  5. 5.
    M. Yin, Y. Yao, H. Fan, S. Liu, J. Alloys Compd. 736, 322–331 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Demel, A. Zhigunov, I. Jirka, M. Klementová, K. Lang, J. Colloid Interface Sci. 452, 174–179 (2015)CrossRefGoogle Scholar
  7. 7.
    L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochim. Acta 54, 4198–4201 (2009)CrossRefGoogle Scholar
  8. 8.
    H.T. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, T.J. Hsueh, S.S. Lin, B.T. Dai, J. Electrochem. Soc. 158, J106–J109 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Molinari, T. Poerio, P. Argurio, Desalination 241, 22–28 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.S. Kim, I.S. Hwang, S.J. Kim, C.Y. Lee, J.H. Lee, Sens. Actuators B 135, 298–303 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Meng, D. Liu, G. Wang, G. San, Y. Shen, Q. Jin et al., Vacuum 144, 272–280 (2017)CrossRefGoogle Scholar
  12. 12.
    J.-H. Kim, A. Katoch, S.-W. Choi, S.S. Kim, Sens. Actuators B 212, 190–195 (2015)CrossRefGoogle Scholar
  13. 13.
    Q. Yao, Z. Feng, C. Yun, Y. Zhou, L. Jie, A. Zhu, Y. Luo, T. Yang, J. Yang, J. Phys. Chem. C 116, 11994–12000 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Li, J. Wang, N. Wang, S. Yan, W. Liu, Y.Q. Fu, Z. Wang, J. Alloys Compd. 725, 1136–1143 (2017)CrossRefGoogle Scholar
  15. 15.
    H.J. Park, N.J. Choi, H. Kang, M.Y. Jung, J.W. Park, H.P. Kang, D.S. Lee, Sens. Actuators B 203, 282–288 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Proença, J. Borges, M.S. Rodrigues, R.P. Domingues, J.P. Dias, J. Trigueiro, N. Bundaleski, O.M.N.D. Teodoro, F. Vaz, Surf. Coat. Technol. 343, 178–185 (2018)CrossRefGoogle Scholar
  17. 17.
    J.-S. Lee, A. Katoch, J.-H. Kim, S.S. Kim, Sens. Actuators B 222, 307–314 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Rydosz, A. Szkudlarek, Sensors 15, 20069–20085 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Hu, Z. Zhu, C. Chen, T. Wen, X. Zhao, L. Xie, Sens. Actuators B 253, 809–817 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Sarica, O. Alev, L.C. Arslan, Z.Z. Ozturk, Thin Solid Films 685, 321–328 (2019)CrossRefGoogle Scholar
  21. 21.
    H. Gao, D. Wei, P. Lin, C. Liu, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Sens. Actuators B 253, 1152–1162 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Sharma, A. Kumar, N. Singh, D. Kaur, Sens. Actuators B 275, 499–507 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, A.C.S. Appl, Mater. Inter. 6, 12031–12037 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, Sens. Actuators B 215, 39–44 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Zhang, X. Tang, J. Zhang, T. Zhou, H. Wang, C. Wu, X. Xia, C. Xie, D. Zeng, Langmuir 34, 14577–14585 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B 243, 262–270 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Sens. Actuators B 220, 59–67 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Wei, Z. Huang, L. Wang, X. Chuai, S. Zhang, G. Lu, Sens. Actuators B 255, 1211–1219 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Cui, L. Gao, B. Yao, S. Wang, P. Zhang, M. Zhang, Electorchem. Commun. 30, 42–45 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Li, C. Shao, D. Lu, G. Lu, X. Li, Y. Liu, A.C.S. Appl, Mater. Inter. 9, 44632–44640 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Yamaura, Y. Iwasaki, S. Hirao, H. Yahiro, Sens. Actuators B 153, 465–467 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Sens. Actuators B 255, 1819–1830 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Fang, H. Li, C. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, RSC Adv. 6, 79343 (2016)CrossRefGoogle Scholar
  34. 34.
    T. Nguyen Thi Anh, C. Nguyen Duc, N. Le Cao, K. Dinh Quang, N. Pham Cam, T. Nguyen Van, H. Chu Manh, H. Nguyen Van, Sens. Actuators B 255, 3275–3283 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Ma, H. Fan, H. Tian, J. Fang, X. Qian, Sens. Actuators B 222, 508–516 (2016)CrossRefGoogle Scholar
  36. 36.
    K. Tao, X. Han, Q. Yin, D. Wang, L. Han, L. Chen, Chem. Select 2(33), 10918–10925 (2017)Google Scholar
  37. 37.
    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11–16 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, J. Ma, J. Phys. Chem. B 108, 17825–17831 (2004)CrossRefGoogle Scholar
  39. 39.
    C. Yang, F. Xiao, J. Wang, X. Su, Sens. Actuators B 207, 177–185 (2015)CrossRefGoogle Scholar
  40. 40.
    X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, J. Mater, Chem. 18, 965–969 (2008)Google Scholar
  41. 41.
    G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan, X. Shen, A.C.S. Appl, Mater. Inter. 4, 744–751 (2012)CrossRefGoogle Scholar
  42. 42.
    C. Yang, X.T. Su, F. Xiao, J.K. Jian, J.D. Wang, Sens. Actuators B 158, 299–303 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, Sens. Actuators B 255, 159–165 (2018)CrossRefGoogle Scholar
  44. 44.
    M. Cai, R. Li, F. Wang, X. Guo, Q. Bai, L. Sun, X. Han, J. Alloys Compd. 729, 222–230 (2017)CrossRefGoogle Scholar
  45. 45.
    P.-P. Zhang, H. Zhang, X.-H. Sun, Nanoscale 8, 1430–1436 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Park, H. Ko, S. An, W.I. Lee, S. Lee, C. Lee, Ceram. Int. 39, 5255–5262 (2013)CrossRefGoogle Scholar
  47. 47.
    F. Huang, W. Yang, F. He, S. Liu, Sens. Actuators B 235, 86–93 (2016)CrossRefGoogle Scholar
  48. 48.
    R.K. Chava, H.-Y. Cho, J.-M. Yoon, Y.-T. Yu, J. Alloys Compd. 772, 834–842 (2019)CrossRefGoogle Scholar
  49. 49.
    S. Zhang, P. Song, H. Yan, Z. Yang, Q. Wang, Appl. Surf. Sci. 378, 443–450 (2016)CrossRefGoogle Scholar
  50. 50.
    C.O. Park, S.A. Akbar, J. Mater. Sci. 38, 4611–4637 (2003)CrossRefGoogle Scholar
  51. 51.
    D. Kohl, J. Phys. D 34, 125 (2001)CrossRefGoogle Scholar
  52. 52.
    H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)CrossRefGoogle Scholar
  53. 53.
    C.A. Pan, T.P. Ma, Appl. Phys. Lett. 37, 714–716 (1980)CrossRefGoogle Scholar
  54. 54.
    K. Diao, J. Xiao, Z. Zheng, X. Cui, Appl. Surf. Sci. 459, 630–638 (2018)CrossRefGoogle Scholar
  55. 55.
    H. Lei, F. Peng, F.S. Ohuchi, Surf. Sci. 603, 2825–2834 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Institute of Sensor Technology Gansu Academy of SciencesLanzhouChina
  3. 3.Key Laboratory of Special Function Materials and Structure Design Ministry of EducationLanzhou UniversityLanzhouChina
  4. 4.Key Laboratory for Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhouChina

Personalised recommendations