Performances of In-doped CuO-based heterojunction gas sensor
- 14 Downloads
Abstract
In this work, the pure and In-doped CuO nanostructure was successfully synthesized by a simple one-step hydrothermal method. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectric spectroscopy were employed for characterization of the structure and morphology of the as-prepared nanostructure materials. Then, the gas sensing properties of the pure and In-doped CuO nanostructure were investigated. Compared with pure CuO, the sensors based on 2 mol% In-doped CuO exhibited enhanced gas sensing and low working temperature obviously. The response to 300 ppm ethanol gas reached to 67.1 at 116 °C, which was almost 9.5 times higher than that of pure CuO. The flow and recombination of carriers at the n–p junction are the main reason for the decrease in the carrier concentration of In2O3/CuO gas sensors in reducing gas. Therefore, we believe that the change of carrier concentration and material surface caused by In doping could be responsible for the enhancement of the gas sensing properties.
Notes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 61974057, 50272026) and Natural Science Foundation of Gansu Province (Grant No 17JR5RA180).
References
- 1.H. Jin, G. Sun, B. Zhang, N. Luo, Y. Li, L. Lin, H. Bala, J. Cao, Z. Zhang, Y. Wang, J. Alloys Compd. 776, 782–790 (2019)CrossRefGoogle Scholar
- 2.J.-H. Lee, Sens. Actuators B 140, 319–336 (2009)CrossRefGoogle Scholar
- 3.C. Liu, Y. Wang, P. Zhao, W. Li, Q. Wang, P. Sun, X. Chuai, G. Lu, J. Colloid Interface Sci. 505, 1039 (2017)CrossRefGoogle Scholar
- 4.U.T. Nakate, R. Ahmad, P. Patil, Y. Wang, K.S. Bhat, T. Mahmoudi, Y.T. Yu, E.-K. Suh, Y.-B. Hahn, J. Alloys Compd. 797, 456–464 (2019)CrossRefGoogle Scholar
- 5.M. Yin, Y. Yao, H. Fan, S. Liu, J. Alloys Compd. 736, 322–331 (2018)CrossRefGoogle Scholar
- 6.J. Demel, A. Zhigunov, I. Jirka, M. Klementová, K. Lang, J. Colloid Interface Sci. 452, 174–179 (2015)CrossRefGoogle Scholar
- 7.L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochim. Acta 54, 4198–4201 (2009)CrossRefGoogle Scholar
- 8.H.T. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, T.J. Hsueh, S.S. Lin, B.T. Dai, J. Electrochem. Soc. 158, J106–J109 (2011)CrossRefGoogle Scholar
- 9.R. Molinari, T. Poerio, P. Argurio, Desalination 241, 22–28 (2009)CrossRefGoogle Scholar
- 10.Y.S. Kim, I.S. Hwang, S.J. Kim, C.Y. Lee, J.H. Lee, Sens. Actuators B 135, 298–303 (2008)CrossRefGoogle Scholar
- 11.D. Meng, D. Liu, G. Wang, G. San, Y. Shen, Q. Jin et al., Vacuum 144, 272–280 (2017)CrossRefGoogle Scholar
- 12.J.-H. Kim, A. Katoch, S.-W. Choi, S.S. Kim, Sens. Actuators B 212, 190–195 (2015)CrossRefGoogle Scholar
- 13.Q. Yao, Z. Feng, C. Yun, Y. Zhou, L. Jie, A. Zhu, Y. Luo, T. Yang, J. Yang, J. Phys. Chem. C 116, 11994–12000 (2012)CrossRefGoogle Scholar
- 14.Z. Li, J. Wang, N. Wang, S. Yan, W. Liu, Y.Q. Fu, Z. Wang, J. Alloys Compd. 725, 1136–1143 (2017)CrossRefGoogle Scholar
- 15.H.J. Park, N.J. Choi, H. Kang, M.Y. Jung, J.W. Park, H.P. Kang, D.S. Lee, Sens. Actuators B 203, 282–288 (2014)CrossRefGoogle Scholar
- 16.M. Proença, J. Borges, M.S. Rodrigues, R.P. Domingues, J.P. Dias, J. Trigueiro, N. Bundaleski, O.M.N.D. Teodoro, F. Vaz, Surf. Coat. Technol. 343, 178–185 (2018)CrossRefGoogle Scholar
- 17.J.-S. Lee, A. Katoch, J.-H. Kim, S.S. Kim, Sens. Actuators B 222, 307–314 (2016)CrossRefGoogle Scholar
- 18.A. Rydosz, A. Szkudlarek, Sensors 15, 20069–20085 (2015)CrossRefGoogle Scholar
- 19.X. Hu, Z. Zhu, C. Chen, T. Wen, X. Zhao, L. Xie, Sens. Actuators B 253, 809–817 (2017)CrossRefGoogle Scholar
- 20.N. Sarica, O. Alev, L.C. Arslan, Z.Z. Ozturk, Thin Solid Films 685, 321–328 (2019)CrossRefGoogle Scholar
- 21.H. Gao, D. Wei, P. Lin, C. Liu, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Sens. Actuators B 253, 1152–1162 (2017)CrossRefGoogle Scholar
- 22.S. Sharma, A. Kumar, N. Singh, D. Kaur, Sens. Actuators B 275, 499–507 (2018)CrossRefGoogle Scholar
- 23.C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, A.C.S. Appl, Mater. Inter. 6, 12031–12037 (2014)CrossRefGoogle Scholar
- 24.D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, Sens. Actuators B 215, 39–44 (2015)CrossRefGoogle Scholar
- 25.T. Zhang, X. Tang, J. Zhang, T. Zhou, H. Wang, C. Wu, X. Xia, C. Xie, D. Zeng, Langmuir 34, 14577–14585 (2018)CrossRefGoogle Scholar
- 26.Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B 243, 262–270 (2017)CrossRefGoogle Scholar
- 27.C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Sens. Actuators B 220, 59–67 (2015)CrossRefGoogle Scholar
- 28.D. Wei, Z. Huang, L. Wang, X. Chuai, S. Zhang, G. Lu, Sens. Actuators B 255, 1211–1219 (2018)CrossRefGoogle Scholar
- 29.G. Cui, L. Gao, B. Yao, S. Wang, P. Zhang, M. Zhang, Electorchem. Commun. 30, 42–45 (2013)CrossRefGoogle Scholar
- 30.X. Li, C. Shao, D. Lu, G. Lu, X. Li, Y. Liu, A.C.S. Appl, Mater. Inter. 9, 44632–44640 (2017)CrossRefGoogle Scholar
- 31.H. Yamaura, Y. Iwasaki, S. Hirao, H. Yahiro, Sens. Actuators B 153, 465–467 (2011)CrossRefGoogle Scholar
- 32.J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Sens. Actuators B 255, 1819–1830 (2018)CrossRefGoogle Scholar
- 33.W. Fang, H. Li, C. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, RSC Adv. 6, 79343 (2016)CrossRefGoogle Scholar
- 34.T. Nguyen Thi Anh, C. Nguyen Duc, N. Le Cao, K. Dinh Quang, N. Pham Cam, T. Nguyen Van, H. Chu Manh, H. Nguyen Van, Sens. Actuators B 255, 3275–3283 (2018)CrossRefGoogle Scholar
- 35.L. Ma, H. Fan, H. Tian, J. Fang, X. Qian, Sens. Actuators B 222, 508–516 (2016)CrossRefGoogle Scholar
- 36.K. Tao, X. Han, Q. Yin, D. Wang, L. Han, L. Chen, Chem. Select 2(33), 10918–10925 (2017)Google Scholar
- 37.M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11–16 (2008)CrossRefGoogle Scholar
- 38.C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, J. Ma, J. Phys. Chem. B 108, 17825–17831 (2004)CrossRefGoogle Scholar
- 39.C. Yang, F. Xiao, J. Wang, X. Su, Sens. Actuators B 207, 177–185 (2015)CrossRefGoogle Scholar
- 40.X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, J. Mater, Chem. 18, 965–969 (2008)Google Scholar
- 41.G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan, X. Shen, A.C.S. Appl, Mater. Inter. 4, 744–751 (2012)CrossRefGoogle Scholar
- 42.C. Yang, X.T. Su, F. Xiao, J.K. Jian, J.D. Wang, Sens. Actuators B 158, 299–303 (2011)CrossRefGoogle Scholar
- 43.S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, Sens. Actuators B 255, 159–165 (2018)CrossRefGoogle Scholar
- 44.M. Cai, R. Li, F. Wang, X. Guo, Q. Bai, L. Sun, X. Han, J. Alloys Compd. 729, 222–230 (2017)CrossRefGoogle Scholar
- 45.P.-P. Zhang, H. Zhang, X.-H. Sun, Nanoscale 8, 1430–1436 (2016)CrossRefGoogle Scholar
- 46.S. Park, H. Ko, S. An, W.I. Lee, S. Lee, C. Lee, Ceram. Int. 39, 5255–5262 (2013)CrossRefGoogle Scholar
- 47.F. Huang, W. Yang, F. He, S. Liu, Sens. Actuators B 235, 86–93 (2016)CrossRefGoogle Scholar
- 48.R.K. Chava, H.-Y. Cho, J.-M. Yoon, Y.-T. Yu, J. Alloys Compd. 772, 834–842 (2019)CrossRefGoogle Scholar
- 49.S. Zhang, P. Song, H. Yan, Z. Yang, Q. Wang, Appl. Surf. Sci. 378, 443–450 (2016)CrossRefGoogle Scholar
- 50.C.O. Park, S.A. Akbar, J. Mater. Sci. 38, 4611–4637 (2003)CrossRefGoogle Scholar
- 51.D. Kohl, J. Phys. D 34, 125 (2001)CrossRefGoogle Scholar
- 52.H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)CrossRefGoogle Scholar
- 53.C.A. Pan, T.P. Ma, Appl. Phys. Lett. 37, 714–716 (1980)CrossRefGoogle Scholar
- 54.K. Diao, J. Xiao, Z. Zheng, X. Cui, Appl. Surf. Sci. 459, 630–638 (2018)CrossRefGoogle Scholar
- 55.H. Lei, F. Peng, F.S. Ohuchi, Surf. Sci. 603, 2825–2834 (2009)CrossRefGoogle Scholar