Advertisement

Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics

  • Yawar Abbas
  • In Sub Han
  • Andrey Sergeevich Sokolov
  • Yu-Rim Jeon
  • Changhwan ChoiEmail author
Article
  • 42 Downloads

Abstract

The resistive switching random access memory (RRAM) device has received a great interest for the next-generation non-volatile memory application, and resistive switching (RS) characteristics are mainly affected by conductive oxygen vacancies ([Vo··]) within switching material. Various effective approaches with materials, doping, and thermal treatments have been attempted to achieve the stable RS behaviors. Particularly, thermal annealing is considered as an efficient knob to control [Vo··] compared to other approaches. However, research on thermal treatment still lacks results and further research efforts are still needed to improve the RS characteristics of the devices. In this work we investigated the RS characteristics of Ti/ZrOx/Pt-structured RRAM device in comparison without and with postrapid thermal annealing (RTA) temperature range under oxygen ambient. The as-fabricated device with atomic layer-deposited ZrOx switching layer exhibited conducting characteristics, which is related to a relatively high amount of [Vo··] within switching medium. It indicates that moderate amount of [Vo··] apparently determines the appropriate RS behaviors. With this regard, we modulated the [Vo··] in ZrOx thin films by employing RTA in the ranges of 500 °C to 800 °C at the oxygen ambient for 60 s. Unlike device without RTA, we observed the stable RS characteristics from device with RTA and device annealed at 700 °C exhibits the excellent bipolar RS characteristics such as higher Ron/Roff, smaller cycle-to-cycle switching variation, better endurance, and longer retention among RTA conditions, indicating moderate amount of [Vo··] formed within ZrOx thin film layer. Moreover, increasing ALD ZrOx thickness shows the further improvement in the RS characteristics and RTA on the thicker ZrOx device still improves the RS behaviors. This research indicates that modulating [Vo··] by fast thermal annealing on the ALD zirconia material can provide the proper RS characteristics of the non-volatile memory applications.

Notes

Acknowledgements

This research was supported by the Future Semiconductor Device Technology Development Program (10080689 and 20004399) funded by MOTIE (Ministry of Trade, Industry & Energy) and KSRC (Korea Semiconductor Research Consortium) as well as by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03013422).

References

  1. 1.
    H.S.P. Wong, S. Salahuddin, Nat. Nanotechnol. 10, 191–194 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Chen, Solid-State Electron. 125, 25–28 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Abbas, Y.-R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. 8, 1228–1237 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Waser, J. Nanosci. Nanotechnol. 10, 7628–7640 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, H. Wang, J. Mater. Sci. Technol. 32, 1–11 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Munjal, N. Khare, Sci. Rep. 7, 12427–12436 (2017)CrossRefGoogle Scholar
  7. 7.
    I. Valov, T. Tsuruoka, J. Phys. D Appl. Phys. 51, 413001–413018 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  9. 9.
    C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Muller, B. Arndt, C.L. Jia, J. Mayer, R.A. De Souza, C.M. Schneider, R. Waser, R. Dittmann, Nat. Commun. 6, 8610–8619 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, ACS Nano 9, 10737–10748 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Appl. Phys. Lett. 97, 243509–243511 (2010)CrossRefGoogle Scholar
  12. 12.
    B. Ku, Y. Abbas, A.S. Sokolov, C. Choi, J. Alloys Compd. 735, 1181–1188 (2018)CrossRefGoogle Scholar
  13. 13.
    M.R. Park, Y. Abbas, H. Abbas, Q. Hu, T.S. Lee, Y.J. Choi, T.S. Yoon, H.H. Lee, C.J. Kang, Microelectron. Eng. 159, 190–197 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, Khoriba, H. Kumigashira, M. Oshima, IEEE International Electron Devices Meeting (IEDM) 1-4 (2008)Google Scholar
  15. 15.
    Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. 16, 10231–10236 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Acharyya, A. Hazra, P. Bhattacharyya, Microelectron. Reliab. 54, 541–560 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Ceramics Int. 43, S547–S556 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Gao, Y. Li, Z. Song, F. Ma, Nanotechnology. 28, 215201–215213 (2017)CrossRefGoogle Scholar
  19. 19.
    A.V. Singh, M. Ferri, M. Tamplenizza, F. Borghi, G. Divitini, C. Ducati, C. Lenardi, C. Piazzoni, M. Merlini, A. Podestà, P. Milani, Nanotechnology. 23, 475101–475110 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Du, H. Li, Q. Mao, Z. Ji, Appl. Phys. Lett. 110, 093507–093509 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105–042108 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, IEEE Electron Device Lett. 29, 434–437 (2008)CrossRefGoogle Scholar
  23. 23.
    B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang, J. Appl. Phys. 105, 061630–061633 (2009)CrossRefGoogle Scholar
  24. 24.
    Y.C. Jung, S. Seong, T. Lee, S.Y. Kim, I.S. Park, J. Ahn, Appl. Surf. Sci. 435, 117–121 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, H. Xu, Z. Wang, X. Zhao, J. Ma, Y. Liu, Mater. Lett. 154, 98–102 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Li, S. Long, H. Lv, Q. Liu, Y. Wang, S. Zhang, W. Lian, M. Wang, K. Zhang, H. Xie, S. Liu, M. Liu, Nanotechnology. 22, 254028–254032 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Lee, J.S. Lee, J.B. Park, Y.K. Kyoung, M.J. Lee, T.W. Noh, APL Mater. 2, 066103 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Gu, J. Appl. Phys. 113, 033707–033713 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 21, 4487–4492 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Schmitt, J. Spring, R. Korobko, J.L.M. Rupp, ACS Nano 11, 8881–8891 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042107 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Kim, S. Choi, J. Lee, W.D. Lu, ACS Nano 8, 2369–2376 (2014)CrossRefGoogle Scholar
  33. 33.
    R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005)CrossRefGoogle Scholar
  34. 34.
    I. Kärkkänen, A. Shkabko, M. Heikkilä, J. Niinistö, M. Ritala, M. Leskelä, S. Hoffmann-Eifert, R. Waser, Phys. Status Solidi Appl. Mater. Sci. 211, 301 (2014)CrossRefGoogle Scholar
  35. 35.
    O. G. Ossorio, S. Dueñas, H. Castán, A. Tamm, K. Kalam, H. Seemen, and K. Kukli, In: Proc. 2018 12th Spanish Conf. Electron Devices, CDE 1 (2018)Google Scholar
  36. 36.
    T.L. Tasi, T.H. Han, T.Y. Tseng, J. Phys. D Appl. Phys. 48, 035108–035113 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Zhai, J. Kong, J. Yang, J. Xu, Q. Xu, H. Sun, A. Li, D. Wu, J. Mat. Sci. Tech. 32, 676–680 (2016)CrossRefGoogle Scholar
  38. 38.
    W.Y. Jian, H.S. You, C.Y. Wu, Jpn. J. Appl. Phy. 57, 011501–011506 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Jiang, D.A. Stewart, A.C.S. Appl, Mat. Int. 9, 16296–16304 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Wei, H. Huang, C. Ye, W. Wei, H. Zhou, Y. Chen, R. Zhang, L. Zhang, Q. Xia, J. Alloys. Comp. 775, 1301–1306 (2019)CrossRefGoogle Scholar
  41. 41.
    B.G. Son, S.Y. Je, H.J. Kim, C.K. Lee, A.Y. Hwang, J.Y. Won, J.H. Song, R. Choi, J.K. Jeong, Phys. Status Solidi Rapid Res. Lett. 7, 485–488 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Vempati, F. Kayaci-Senirmak, C. Ozgit-Akgun, N. Biyikli, T. Uyar, J. Phys. Chem. C 119, 23268–23273 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Abbas, A.S. Sokolov, Y.-R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. 759, 44–51 (2018)CrossRefGoogle Scholar
  44. 44.
    X. Xu, X. Wang, Nano Res. 2, 891–902 (2009)CrossRefGoogle Scholar
  45. 45.
    D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. Disalvo, H.D. Abruña, Nat. Mater. 12, 81–87 (2013)CrossRefGoogle Scholar
  46. 46.
    F. Nardi, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Devices 59, 2468–2475 (2012)CrossRefGoogle Scholar
  47. 47.
    S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Dev. 61, 2912–2919 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKhalifa UniversityAbu DhabiUnited Arab Emirates
  2. 2.Division of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations