High-energy X-ray detection capabilities of Hf-loaded plastic scintillators synthesized by sol–gel method

  • Kei KagamiEmail author
  • Masanori Koshimizu
  • Yutaka Fujimoto
  • Syunji Kishimoto
  • Rie Haruki
  • Fumihiko Nishikido
  • Keisuke Asai


The high-energy X-ray detection capabilities of hafnium oxide-doped organosilica plastic scintillators were analysed. Plastic scintillators with different concentrations of Hf were synthesized via the sol–gel method. In the photoluminescence emission spectra and X-ray-excited radioluminescence spectra, all of the plastic samples showed broad emission bands peaking between 350 and 500 nm derived from the fluorescence of the organic phosphor b-PBD. The maximum detection efficiency for a thickness of 1 mm towards 67.41 keV high-energy X-ray was estimated to be 6.3% (Hf 10 wt%) which is 3.7 times larger than that of the undoped sample and 1.9 times larger than that of the commercialized Pb 5 wt%-doped plastic scintillator EJ-256. The full width at half maximum time resolutions were estimated to be approximately 0.4 to 0.6 ns, which is almost independent of the Hf concentration of Hf. Therefore, the detection efficiency towards high-energy X-rays was successfully improved while maintaining the original high time resolution of plastic scintillators by adding Hf to the plastic scintillator at high concentrations.



This research was supported by a Grant-in-Aid for Scientific Research (A) (Grant No. 18H03890, 2018–2021). A part of this research is based on the Cooperative Research Project of Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.


  1. 1.
    M. Nikl, Meas. Sci. Technol. 17, R37–R54 (2006)CrossRefGoogle Scholar
  2. 2.
    T. Yanagida, A. Yoshikawa, Y. Yokota, K. Kamada, Y. Usuki, S. Yamamoto, M. Miyake, M. Baba, K. Sasaki, M. Ito, IEEE Trans. Nucl. Sci. 57, 1492 (2010)CrossRefGoogle Scholar
  3. 3.
    L.E. Sinclair, D.S. Hanna, A.M.L. MacLeod, P.R.B. Saull, IEEE Trans. Nucl. Sci. 56, 1262 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Baberdin, A. Dutova, A. Fedorov, M. Korzhik, V. Ligoun, O. Missevitch, V. Kazak, A. Vinokurov, S. Zagumenov, IEEE Trans. Nucl. Sci. 55, 1170 (2008)CrossRefGoogle Scholar
  5. 5.
    I. Keisuke, Y. Kobayashi, Y. Yoda, M. Koshimizu, F. Nishikido, R. Haruki, S. Kishimoto, Nucl. Instrum. Methods Phys. Res. A 87, 880 (2018)Google Scholar
  6. 6.
    U. van Bürck, D.P. Siddons, J.B. Hastings, U. Bergmann, R. Hollatz, Phys. Rev. B 46(10), 6207 (1992)CrossRefGoogle Scholar
  7. 7.
    E. Gerdau, F. DeWaard, Hyp. Interact. 123 (1999)Google Scholar
  8. 8.
    S. Kishimoto, Nucl. Instrum. Methods Phys. Res. A 309, 603 (1991)CrossRefGoogle Scholar
  9. 9.
    S. Kishimoto, Rev. Sci. Instrum. 63, 824 (1992)CrossRefGoogle Scholar
  10. 10.
    A.Q.R. Baron, S. Kishimoto, J. Morse, J.M. Rigal, J. Synchrotron Radiat. 13, 131 (2006)CrossRefGoogle Scholar
  11. 11.
    I.V. Kilimchuk, V.P. Gavrilyuk, B.V. Grinyov, V.A. Tarasov, YuT Viday, Opt. Mater. 30, 1800 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Alarja, A. Dauchy, A. Giorni, C. Morand, E. Pollaco, P. Stassi, R. Billerey, B. Chambon, B. Cheynis, D. Drain, C. Pastor, Nucl. Instrum. Methods Phys. Res. A 242, 352 (1986)CrossRefGoogle Scholar
  13. 13.
    C.W.E. van Eijk, Phys. Med. Biol. 47(8), 85 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Yoshida, G. Okada, N. Kawaguchi, T. Yanagida, Optik 182, 884 (2019)CrossRefGoogle Scholar
  15. 15.
    Y. Yoshida, K. Shinozaki, T. Igashira, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, Solid State Sci. 78, 1 (2018)CrossRefGoogle Scholar
  16. 16.
    K. Takahashi, M. Koshimizu, Y. Fujimoto, T. Yanagida, K. Asai, J. Ceram. Soc. Jpn. 126, 755 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Laval, M. Moszynski, R. Allemand, E. Cormoreche, P. Guinet, R. Ordu, J. Vacher, Nucl. Instrum. Methods Phys. Res. 206, 169 (1983)CrossRefGoogle Scholar
  18. 18.
    Data sheet of EJ-232Q Eljen TechnologyGoogle Scholar
  19. 19.
    Data sheet of EJ-212 Eljen TechnologyGoogle Scholar
  20. 20.
    G.H.V. Bertrand, F. Sguerra, C. Dehe-Pittance, F. Carrel, R. Coulon, S. Normand, E. Barat, T. Dautremer, T. Montagu, M. Hamel, J. Mater. Chem. C 2(35), 7304 (2014)CrossRefGoogle Scholar
  21. 21.
    N.J. Cherepy, R.D. Sanner, P.T. Beck, E.L. Swanberg, T.M. Tillotson, S.A. Payne, C.R. Hurlbut, Nucl. Instrum. Methods Phys. Res. A 778, 126 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Koshimizu, G.H.V. Bertrand, M. Hammel, S. Kishimoto, R. Haruki, F. Nishikido, T. Yanagida, Y. Fujimoto, K. Asai, Jpn. J. Appl. Phys. 54, 102202 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Hiyama, T. Noguchi, M. Koshimizu, S. Kishimoto, R. Haruki, F. Nishikido, T. Yanagida, Y. Fujimoto, T. Aida, S. Takami, T. Adschiri, K. Asai, Jpn. J. Appl. Phys. 57, 012601 (2018)CrossRefGoogle Scholar
  24. 24.
    Data sheet of EJ-256 Eljen TechnologyGoogle Scholar
  25. 25.
    Y. Araya, M. Koshimizu, R. Haruki, F. Nishikido, S. Kishimoto, K. Asai, Sens. Mater. 27, 255 (2015)Google Scholar
  26. 26.
    F. Hiyama, T. Noguchi, M. Koshimizu, S. Kishimoto, R. Haruki, F. Nishikido, Y. Fujimoto, T. Aida, S. Takami, T. Adschiri, K. Asai, Jpn. J. Appl. Phys. 57, 052203 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Sun, M. Koshimizu, N. Yahaba, F. Nishikido, S. Kishimoto, R. Haruki, K. Asai, Appl. Phys. Lett. 104, 174104 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Koshimizu, K. Onodera, F. Nishikido, R. Haruki, K. Shibuya, S. Kishimoto, K. Asai, J. Appl. Phys. 111, 024906 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Sun, M. Koshimizu, T. Harada, Y. Fujimoto, K. Asai, Sens. Mater. 28, 887–895 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  3. 3.National Institute of Radiological ScienceNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan

Personalised recommendations