Advertisement

Stirring-mediated anomalous dielectric behaviour of electrodeposited and in situ oxidized FeAl2O4 thin films

  • Attia Awan
  • Saira RiazEmail author
  • Azqa Farrukh Butt
  • Naveed Ahmad
  • Zubair Ahmad
  • Shahzad Naseem
Article
  • 23 Downloads

Abstract

Spinel ferrites, due to high permeability and stability, possess remarkable features that make them a favourable candidate for spintronic applications. Electrodeposition method is used for the synthesis of iron aluminium oxide (FAO) thin films. A series of samples are prepared by keeping deposition time constant at 10 min, and in situ oxidation time varied as 5 min, 10 min, 15 min and 20 min by anodic electrodeposition. These electrodeposited FAO thin films are annealed at 500 Oe applied magnetic field at 300 °C in vacuum. At 5-min oxidation time, mixed structural phases, i.e. FeAl2O4 and Al2O3, are observed, whereas phase-pure FeAl2O4 is observed at 10-min oxidation time. A further increase in oxidation time to 15 min and 20 min results in reappearance of mixed phases. Phase-pure FeAl2O4 thin film at oxidation time of 10 min exhibits bond angle of ~ 158.59° with + ive tilt ~ 4.59°. A decrease in bond angle (i.e. ~ 139.20°) with − ive tilt ~ − 14.8° is observed with an increase in oxidation time to 20 min. SEM micrographs show the formation of octahedral and dodecahedral grains for 10-min oxidation time with grain size in the range of 2–3 μm. FTIR and Raman analysis confirms the formation of FeAl2O4 thin film at 10-min oxidation time with the appearance of bands at 610.94 cm−1 and 753 cm−1, respectively. Magnetic hysteresis curves show a ferromagnetic behaviour of iron aluminium oxide thin films. Thin film prepared using 10-min oxidation time shows a relatively higher value of saturation magnetization Ms (17.89 emu/cm3). Anomalous dielectric behaviour is observed for FeAl2O4 thin films due to the resonance phenomena at higher frequencies. Dielectric constant of ~ 37.96 at log f = 5.0 is observed for 10-min oxidation time. Temperature-dependent dielectric study is also carried out in the temperature range of 30–210 °C. Fitting of Cole–Cole plots through ZView software shows a strong dependence of dielectric constant on grain boundary resistance. This is to be emphasized that detailed study on the dielectric and impedance properties of electrodeposited iron aluminium oxide thin films is rare to be found. Having knowledge of room temperature and temperature-dependent dielectric properties of iron aluminium oxide thin films will help in extending the field of application to the microelectronic industry.

Notes

References

  1. 1.
    M.J. Iqbal, S. Farooq, Enhancement of electrical resistivity of Sr0.5Ba0.5Fe12O19 nanomaterials by doping with lanthanum and nickel. Mater. Chem. Phys. 118, 308–313 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Yanase, N. Hamada, Electronic structure in high temperature phase of Fe3O4. J. Phys. Soc. Japan 68, 1607–1613 (1999)CrossRefGoogle Scholar
  3. 3.
    V.A.M. Brabers, Progress in spinel ferrite research. Handbook Magn. Mater. 8, 189–324 (1995)Google Scholar
  4. 4.
    S. Riaz, M. Azam, R. Ashraf, S. Naseem, Magnetic and magnetization properties of iron aluminum oxide thin films prepared by Sol-Gel. IEEE Trans. Magn. 50, 1–4 (2014)Google Scholar
  5. 5.
    L. Kumar, M. Kar, Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Mater. 323, 2042–2048 (2011)CrossRefGoogle Scholar
  6. 6.
    M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Effect of oxidation time on structural, optical and electrical properties of mixed copper oxides nanocrystallites. Optik. 173, 101–109 (2018)CrossRefGoogle Scholar
  7. 7.
    I. Jastrzębska, J. Szczerba, P. Stoch, A. Błachowski, K. Ruebenbauer, R. Prorok, R.E. Śnieżek, Crystal structure and Mössbauer study of FeAl2O4. Nukleonika 60, 47–49 (2015)CrossRefGoogle Scholar
  8. 8.
    J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Fukushima, Y. Hayashi, H. Takizawa, Structure and magnetic properties of FeAl2O4 synthesized by microwave magnetic field irradiation. J. Asian. Ceram. Soci 1, 41–45 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Chen, L. Yu, J. Sun, Y. Li, W. Xue, Synthesis of hercynite by reaction sintering. J. Eur. Ceram. Soci 31, 259–263 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Ma, Y. Li, J. Sun, Z. Wang, Synthesis of hercynites under N2 atmosphere. J. Chin. Ceram. Soc. 39, 424–429 (2011)Google Scholar
  12. 12.
    M.M. Yaqoob, S.S. Hussain, S. Riaz, S. Naseem, Effect of oxidation temperature on structural and magnetic properties of Al-doped iron oxide thin films. Mater. Today. Proce. 2, 5400–5404 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Mukhtar, Z.N. Kayani, S. Riaz, S. Naseem, Effect of in situ oxidation on structure and ferromagnetic properties of Fe3Al and FeAl2O4 thin films prepared by electrodeposition. Ceram. Intern. 44, 9550–9560 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Riaz, S. Naseem, Y.B. Xu, Room temperature ferromagnetism in sol–gel deposited un-doped ZnO films. J. Sol-Gel. Sci. Technol. 59, 584–590 (2011)CrossRefGoogle Scholar
  15. 15.
    H.M. Asghar, F. Placido, S. Naseem, Characterization of Ta2O5 thin films prepared by reactive evaporation. Eur. Phys. J. Appl. Phys. 36, 119–124 (2006)CrossRefGoogle Scholar
  16. 16.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv. Func. Mater. 22, 3326–3370 (2012)CrossRefGoogle Scholar
  17. 17.
    B.D. Cullity, Elements of X-ray diffraction (Addison and Wesley Publishing Company Inc., Boston, 1978), pp. 32–106Google Scholar
  18. 18.
    S.S. Shojaeenezhad, M. Farbod, I. Kazeminezhad, Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers’ method. J. Sci. Adv. Mater. Devi. 2, 470–475 (2017)Google Scholar
  19. 19.
    R.C. Buchanan, Ceramic materials for electronics (CRC Press, New York, 2004), p. 68Google Scholar
  20. 20.
    L. Szabo, K. Herman, N.E. Mircescu, A. Falamas, L.F. Leopold, N. Leopold, C. Buzumurga, C. Vasile, V. Chis, SERS and DFT investigation of 1-(2-pyridylazo)-2-naphthol and its metal complexes with Al(III), Mn(II), Fe(III), Cu (II), Zn (II) and Pb(II). Spectro. Acta. Part. A: Mole. Bio. Sepctro. 93, 266–273 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Anjum, R. Tufail, R.K. Rashid, R. Zia, S. Riaz, Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles. J. Magn. Magn. Mater. 432, 198–207 (2017)CrossRefGoogle Scholar
  22. 22.
    M.V. Biber, W. Stumm, An in situ ATR-FTIR study: the surface coordination of salicylic acid on aluminum and iron (III) oxides. Environ. Sci. Tech. 28, 763–768 (1994)CrossRefGoogle Scholar
  23. 23.
    F. Ospitali, T. Sabetta, F. Tullini, M.C. Nannetti, G. Di Lonardo, The role of Raman microspectroscopy in the study of black gloss coatings on Roman pottery. J. Raman Spectro. 36, 18–23 (2005)CrossRefGoogle Scholar
  24. 24.
    V.G. Ivanov, M.V. Abrashev, M.N. Iliev, M.M. Gospodinov, J. Meen, M.I. Aroyo, Short-range B-site ordering in the inverse spinel ferrite NiFe2O4. Phys. Rev. B. 82, 024104 (2010)CrossRefGoogle Scholar
  25. 25.
    D.P. Dutta, G. Sharma, Synthesis and magnetic behavior of spinel FeAl2O4 nanoparticles. Mater. Sci. Eng., B 176, 177–180 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2011)Google Scholar
  27. 27.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, S.A. Khan, The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites. J. Magn. Magn. Mater. 428, 136–143 (2017)CrossRefGoogle Scholar
  28. 28.
    M. J. Thornton, M. Ziese, Spin electronics. In: Spin electronics, Lecture notes in physics, vol. 569 (2001)Google Scholar
  29. 29.
    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy theory, experiment, and applications (Wiley, Publication, 2005)CrossRefGoogle Scholar
  30. 30.
    N. Kumari, V. Kumar, S.K. Singh, Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram. Inter. 40, 12199–12205 (2014)CrossRefGoogle Scholar
  31. 31.
    R.M. Ahmed, M. Fadel, M.S. Hanafy, M.A. Ibrahim, Characterization and dielectric properties of magnetic nanoparticles (Ferrofluid) conjugated with chemotherapy drug for medical application. J. Appl. Phys. 6, 38–46 (2014)Google Scholar
  32. 32.
    S.J. Gerber, E. Erasmus, Electronic effects of metal hexacyanoferrates: an XPS and FTIR study. Mater. Chem. Phys. 203, 73–81 (2018)CrossRefGoogle Scholar
  33. 33.
    K.M. Batoo, F.A. Mir, M.S.A. El-sadek, M. Shahabuddin, N. Ahmed, Extraordinary high dielectric constant, electrical and magnetic properties of ferrite nanoparticles at room temperature. J. Nano. Res 15, 2067 (2013)CrossRefGoogle Scholar
  34. 34.
    F. Yu, J. Ma, J. Wang, M. Zhang, J. Zheng, Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146, 162–172 (2016)CrossRefGoogle Scholar
  35. 35.
    G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, Electric, dielectric and ac electrical conductivity study of nanocrystalline cobalt substituted Mg–Mn ferrites synthesized via solution combustion technique. J. Mol. Struct. 1051, 336–344 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Ali, A.K. Sarfraz, M.I. Mirza, A. Bahadur, S. Iqbal, A. Haq, Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr. Appl. Phys. 15, 925–929 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Kaiser, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites. Phys. B: Cond. Matter. 407, 606–613 (2012)CrossRefGoogle Scholar
  38. 38.
    N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)CrossRefGoogle Scholar
  39. 39.
    E.M.A. Jamal, K.D. Sakthi, M.R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull. Mater. Sci. 34, 251–259 (2011)CrossRefGoogle Scholar
  40. 40.
    M.M. El-Desoky, M.S. Ayoua, M.M. Mostafa, M.A. Ahmed, Multiferroic properties of nanostructured barium doped bismuth ferrite. J. Magn. Magn. Mater. 404, 68–73 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Rout, R.N.P. Choudhary, Effect of multiple substitutions on structural, electrical and magnetic characteristics of thermo-mechanically activated BiFeO3 ceramics. J. Mater. Sci.: Mater. Elect. 26, 2905–2912 (2015)Google Scholar
  42. 42.
    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graca, L.C. Costa, Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds. J. Alloys. Compd. 653, 506–512 (2015)CrossRefGoogle Scholar
  43. 43.
    B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401–410 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan
  2. 2.Department of PhysicsUniversity of EducationLahorePakistan
  3. 3.Ibn-e-Sina Institute of TechnologyIslamabadPakistan

Personalised recommendations