Suppressed dielectric loss and enhanced thermal conductivity in poly(vinylidene fluoride) nanocomposites using polyethylene glycol-grafted graphene oxide

  • Wenqi Wu
  • Junyang Tu
  • Hairong Li
  • Ziwei Zhan
  • Leping Huang
  • Ziqing Cai
  • Qiong Li
  • Ming JiangEmail author
  • Jing HuangEmail author


In order to realize efficient electronic energy storage and transfer, low dielectric loss as well as high thermal conductivity can be highly desirable for dielectric materials due to the associated ability to reduce and release the electrical energy dissipation as heat. However, it is challenging for percolative dielectric composites to simultaneously realize the two objectives above. In this study, polyethylene glycol-grafted graphene oxide (PEG-g-GO) is synthesized by grafting PEG on the graphene oxide. The grafted PEG serves as an interfacial modifier and insulting layer in poly(vinylidene fluoride) (PVDF)/GO system. The PVDF/PEG-g-GO composites simultaneously exhibit both lower dielectric loss and higher thermal conductivity than the PVDF/GO composites. The grafted PEG on the GO surfaces can inhibit the dielectric loss through increasing the insulation capacity and free volume, as well as enhance the thermal conductivity by promoting the interfacial interaction and the GO dispersion.



This research was supported by the National Natural Science Foundation of China (Grant Nos. 51503158, 51803155). We also acknowledge Analytical and Testing Center of Wuhan Textile University for performing the characterizations and analysis.


  1. 1.
    Q. Li, F. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, High-temperature dielectric materials for electrical energy storages. Annu. Rev. Mater. Res. 48, 219–243 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Shen, X. Zhang, M. Li, Y. Lin, C. Nan, Polymer nanocomposite dielectrics for electrical energy storage. Natl. Sci. Rev. 4, 23–25 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.M. Dang, M. Zheng, P. Hu, J. Zha, Dielectric polymer materials for electrical energy storage and dielectric physics: a guide. J. Adv. Phys. 4, 302–313 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan, Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28, 2055–2061 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Wang, X. Zhang, J. Zha, Y. You, X. Yan, Z.M. Dang, Barium titanate@polyaniline core-shell semiconducting particles reinforced poly(vinylidene fluoride) flexible films with a percolation threshold and high dielectric constant. J. Mater. Sci.: Mater. Electron. 30, 3325–3331 (2019)Google Scholar
  7. 7.
    C. Zhang, Y. Yin, Q. Yang, Z. Shi, G. Hu, C. Xiong, Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain. Chem. Eng. 7, 10641–10648 (2019)CrossRefGoogle Scholar
  8. 8.
    C. Pei, S.L. Jiang, Y. Yu, S. Liu, Y. Zeng, G.Z. Zhang, Effect of electric field on dielectric properties of antiferroelectric ceramic/polymer composites. J. Mater. Sci.: Mater. Electron. 26, 3236–3242 (2015)Google Scholar
  9. 9.
    M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, Y. Shen, High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Today Mater. (2019). CrossRefGoogle Scholar
  10. 10.
    W. Xia, Z. Zhang, PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1, 17–31 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Xia, Z. Xu, Z. Zhang, H. Li, Dielectric, piezoelectric and ferroelectric properties of a poly (vinylidene fluoride-co-trifluoroethylene) synthesized via a hydrogenation process. Polymer 54, 440–446 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. He, X. Yu, J. Yang, N. Zhang, T. Huang, Y. Wang, Z. Zhou, Largely enhanced dielectric properties of poly (vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Composites A 104, 89–100 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Guan, C. Xing, Y. Wang, Y. Li, J. Li, Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos. Sci. Technol. 138, 98–105 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Deshmukh, G.M. Joshi, Novel nanocomposites of graphene oxide reinforced poly (3, 4-ethylenedioxythiophene)-block-poly (ethylene glycol) and polyvinylidene fluoride for embedded capacitor applications. RSC Adv. 4, 37954–37963 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10, 13860–13868 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Li, C. Xu, Z. Chen, M. Jiang, C. Xiong, Graphene/poly(vinylidene fluoride) dielectric composites with polydopamine as interface layers. Sci. Eng. Compos. Mater. 24, 327–333 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Xu, C. Yang, J. Yang, T. Huang, N. Zhang, Y. Wang, Z. Zhou, Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites B 109, 91–100 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, H. Li, D. Hu, D. Fang, Z. Luo, J. Tu, J. Huang, M. Jiang, C. Xiong, A new strategy for the preparation of silver/epoxy/poly (vinylidene fluoride) dielectric composites with a multi-interface structure for suppressed dielectric loss. Polym. Compos. 39, E2606–E2610 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Xu, W. Fu, Y. Hu, Y. Ding, Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos. Sci. Technol. 158, 1–8 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, H. Li, J. Tu, R. Shi, Z. Luo, C. Xiong, M. Jiang, Shape stability of polyethylene glycol/acetylene black phase change composites for latent heat storage. Adv. Mater. Sci. Eng. 2018, 3954163 (2018)Google Scholar
  22. 22.
    I.S. Elashmawi, N.H. Elsayed, F.A. Altalhi, The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles. J. Alloys Compd. 617, 877–883 (2014)CrossRefGoogle Scholar
  23. 23.
    N.L. Garcia, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, S. Goyanes, Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym. Degrad. Stab. 97, 2021–2026 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Tu, H. Li, Z. Cai, J. Zhang, X. Hu, J. Huang, L. Huang, Phase change-induced tunable dielectric permittivity of poly (vinylidene fluoride)/polyethylene glycol/graphene oxide composites. Composites B 173, 106920 (2019)CrossRefGoogle Scholar
  25. 25.
    X. Zhang, G. Wang, W. Cao, Y. Wei, M. Cao, L. Guo, Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties. RSC Adv. 4, 19594–19601 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Xu, Z. Zhang, H. Xu, J. Chen, R. Ran, Z. Li, Highly enhanced crystallization kinetics of poly(l-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 48, 4891–4900 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Tu, H. Li, J. Zhang, D. Hu, Z. Cai, X. Yin, L. Dong, L. Huang, C. Xiong, M. Jiang, Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2, 471–480 (2019)CrossRefGoogle Scholar
  28. 28.
    F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Li, Z. Chen, L. Liu, J. Chen, M. Jiang, C. Xiong, Poly(vinyl pyrrolidone)-coated graphenepoly(vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos. Sci. Technol. 121, 49–55 (2015)CrossRefGoogle Scholar
  30. 30.
    Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Dielectric behavior of a metal-polymer composite with low percolation threshold. Appl. Phys. Lett. 89, 072902 (2006)CrossRefGoogle Scholar
  31. 31.
    Y. Thakur, M. Lin, S. Wu, Q.M. Zhang. Introducing free volume in strongly dipolar polymers to achieve high dielectric constant. In: 2015 IEEE conference on electrical insulation and dielectric phenomena, Ann Arbor, October, pp. 636–639 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Hubei Engineering Research Center of Industrial Fiber Preparation and Application TechnologyWuhan Textile UniversityWuhanPeople’s Republic of China
  2. 2.Mechanical Metrology DivisionHubei Institute of Measurement and Testing TechnologyWuhanPeople’s Republic of China

Personalised recommendations