Amorphous CoS modified nanorod NiMoO4 photocatalysis for hydrogen production

  • Xuanhao Li
  • Jing XuEmail author
  • XueYing Zhou
  • Zeying Liu
  • Yanru Li
  • Sheng Zhao
  • Lingjiao Li
  • Min Mao


In this study, a CoS/NiMoO4 composite catalyst with good TYPE-II heterojunction was prepared by hydrothermal method with NiMoO4 nanorods, with water as a medium to load small amount of amorphous CoS, by changing the loading amounts of amorphous CoS. X-ray diffraction, UV–Visible diffuse reflection and other characteristics indicate that doped amorphous CoS can significantly improve the photocatalytic performance of NiMoO4, and the charge separation and electron transfer efficiency of composite catalysts detected by photoelectric chemistry are also significantly improved compared with NiMoO4. The photocatalytic activity and stability of the composite catalyst were studied by hydrogen evolution experiment. The hydrogen production rate of the composite catalyst can reach 338 μmol, which is 3.23 times higher than pure NiMoO4. This simple hydrothermal synthesis of photocatalytic materials provides new ideas and methods for the design and development of new composite photocatalysts.



This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262). This work was financially supported by the Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    B. Wang, J. Pan, Z. Jiang, Z. Dong, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Li, The bimetallic iron–nickel sulfide modified g-C3N4 nano-heterojunction and its photocatalytic hydrogen production enhancement. J. Alloys Compd. 766, 421–428 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Li, J. Xu, J.P. Ma, Z. Liu, Y. Li, A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution. J. Colloid Interface Sci. 552, 17–26 (2019)CrossRefGoogle Scholar
  3. 3.
    L. Li, J. Xu, M. Mao, X. Li, S. Zhao, Z. Liu, Y. Li, Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst. Appl. Surf. Sci. 481, 692–701 (2019)CrossRefGoogle Scholar
  4. 4.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  5. 5.
    D.P. Kumar, H. Park, E.H. Kim, S. Hong, M. Gopannagari, D.A. Reddy, T.K. Kim, Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B Environ. 224, 230–238 (2018)CrossRefGoogle Scholar
  6. 6.
    R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol., C 11, 179–209 (2010)CrossRefGoogle Scholar
  7. 7.
    Q.J. Xiang, J.G. Yu, Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4, 753–759 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Hou, Z. Wang, W. Kan, S. Jiao, H. Zhu, R.V. Kumar, Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core-shell composites coupled with graphene oxide nanosheets. J. Mater. Chem. 22, 7291–7299 (2012)CrossRefGoogle Scholar
  9. 9.
    J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci. 6, 2082–2092 (2013)CrossRefGoogle Scholar
  10. 10.
    K.H. Reddy, S. Martha, K.M. Parida, Facile fabrication of Bi2O3/Bi-NaTaO3 photocatalysts for hydrogen generation under visible light irradiation. RSC Adv. 2, 9423–9436 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Maione, M. Devillers, Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol–gel and citrate methods. J. Solid State Chem. 177, 2339–2349 (2004)CrossRefGoogle Scholar
  13. 13.
    S.M. Ghoreishian, G.S.R. Raju, E. Pavitra, C.H. Kwak, Y.-K. Han, Y.S. Huh, Controlled synthesis of hierarchical α-nickel molybdate with enhanced solar-light-responsive photocatalytic activity: a comprehensive study on the kinetics and effect of operational factors. Ceram. Int. 45(9), 12041–12052 (2019)CrossRefGoogle Scholar
  14. 14.
    T.K. Ghorai, D. Dhak, S. Dalai, P. Pramanik, Preparation and photocatalytic activity of nano-sized nickel molybdate (NiMoO4) doped bismuth titanate (Bi2Ti4O11) (NMBT) composite. J. Alloy. Compd. 463, 390–397 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Yang, J. Wang, Y.P. Wan, Y.Z. Li, H.D. Xie, H. Cheng, H.J. Seo, Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye. J. Alloy. Compd. 664, 756–763 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, K. Saberyan, Morphology and photoluminescence of BaMoO4 micro- and nano-crystals synthesized by coprecipitation method. Trans. Nonferr. Met. Soc. China 25, 3967–3973 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, Facile synthesis and characterization of nickel molybdate nanorods as an effective photocatalyst by co-precipitation method. J. Mater. Sci.: Mater. Electron. 27, 10244–10251 (2016)Google Scholar
  18. 18.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab et al., Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 26(10), 7588–7594 (2015)Google Scholar
  19. 19.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab et al., Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(22), 1–9 (2018)Google Scholar
  20. 20.
    D. Zhang, R. Zhang, C. Xu, Y. Fan, B. Yuan, Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing. Sens. Actuators B: Chem. 206, 1–7 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 422, 53–57 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Alborzi, S. Khademolhoseini, Nickel molybdate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27, 3963–3967 (2016)Google Scholar
  23. 23.
    S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27(5), 4351–4355 (2016)Google Scholar
  24. 24.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)CrossRefGoogle Scholar
  25. 25.
    V. Umapathy, P. Neeraja, A. Manikandan, P. Ramu, Synthesis of NiMoO4 nanoparticles by sol-gel method and their structural, morphological, optical, magnetic and photocatalytic properties. Trans. Nonferr. Met. Soc. China 27(8), 1785–1793 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Kornienko, J. Resasco, N. Becknell, C.M. Jian, Y.S. Liu, K. Nie, X.H. Sun, J.H. Guo, S.R. Leone, P.D. Yang, Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 7448–7455 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Yu, S.Y. Wen, W.D. Shi, Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors. Mater. Lett. 214, 194–197 (2018)CrossRefGoogle Scholar
  29. 29.
    J. Pu, Z. Shen, J. Zheng, W. Wu et al., Multifunctional Co3S4@ sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37, 7–14 (2017)CrossRefGoogle Scholar
  30. 30.
    F. Chen, W. Luo, Y. Mo, H. Yu, B. Cheng, In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl. Surf. Sci. 430, 448–456 (2018)CrossRefGoogle Scholar
  31. 31.
    W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods. Colloids Surf. A: Physicochem. Eng. Asp. 514, 98–106 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi et al., Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. (2018). CrossRefGoogle Scholar
  33. 33.
    S.K. Ray, D. Dhakal, Y.K. Kshetri, S.W. Lee, Cu-α-NiMoO4 photocatalyst for degradation of methylene blue with pathways and antibacterial performance. J. Photochem. Photobiol. A: Chem. 348, 18–32 (2017)CrossRefGoogle Scholar
  34. 34.
    S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(6), 5758–5763 (2016)Google Scholar
  35. 35.
    D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 422(1–2), 53–57 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Xu, H. Yu, H. Guo, Synthesis and behaviors of g-C3N4 coupled with LaxCo3−xO4 nanocomposite for improved photocatalytic activity and stability under visible light. Mater. Res. Bull. 105, 342–348 (2018)CrossRefGoogle Scholar
  37. 37.
    H. Yu, J. Xu, C. Yin, Z. Liu, Y. Li, Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@ Ni4S3. J. Solid State Chem. 272, 102–112 (2019)CrossRefGoogle Scholar
  38. 38.
    H. Chen, X. Zhu, Y. Chang, J. Cai, R. Zhao, 3D flower-like CoS hierarchitectures recycled from spent LiCoO2 batteries and its application in electrochemical capacitor. Mater. Lett. 218, 40–43. ISSN 0167-577X (2018)CrossRefGoogle Scholar
  39. 39.
    Y. Li, J. Xu, Z. Liu et al., Synthesis of Ni12P5 on Co3S4 material for effectively improved photocatalytic hydrogen production from water splitting under visible light. J. Mater. Sci.: Mater. Electron. (2019). CrossRefGoogle Scholar
  40. 40.
    Z. Liu, J. Xu, Y. Li, H. Yu, High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal. Lett. 148, 3205–3213 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xuanhao Li
    • 1
  • Jing Xu
    • 1
    • 2
    • 3
    • 4
    Email author
  • XueYing Zhou
    • 1
  • Zeying Liu
    • 1
  • Yanru Li
    • 1
  • Sheng Zhao
    • 1
  • Lingjiao Li
    • 1
  • Min Mao
    • 1
  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China
  2. 2.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical EngineeringNingxia UniversityYinchuanPeople’s Republic of China
  3. 3.Ningxia Key Laboratory of Solar Chemical Conversion TechnologyNorth Minzu UniversityYinchuanPeople’s Republic of China
  4. 4.Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs CommissionNorth Minzu UniversityYinchuanPeople’s Republic of China

Personalised recommendations