Advertisement

Z-scheme g-C3N4/BiVO4 photocatalysts with RGO as electron transport accelerator

  • Qi Zhang
  • Miao Liu
  • Shujie Liu
  • Liang Qiao
  • Xiaoying HuEmail author
  • Hongwei TianEmail author
Article
  • 23 Downloads

Abstract

BiVO4 is known for its ability to decompose water under visible light irradiation. However, BiVO4 overall suffers from rapid recombination of photogenerated carriers, low photochemical conversion efficiency, low specific surface area, poor conductivity, and weak adsorption capacity of dye. These features limited its application in photocatalysis. In this work, ternary Z-scheme g-C3N4/RGO/BiVO4 nanocomposites were successfully fabricated by in situ electrostatic adsorption of g-C3N4 sheets on RGO/BiVO4 surface using hydrothermal and thermal oxidations processes. The ternary Z-scheme g-C3N4/RGO/BiVO4 nanocomposites were then tested for photodegradation of Rhodamine B. The introduction of graphene into direct Z-scheme g-C3N4/BiVO4 nanocomposites as an electronic accelerator efficiently enhanced the photocatalytic properties. The as-prepared g-C3N4/RGO/BiVO4 composites exhibited optimal visible light responses with significantly improved photocatalytic performances toward degradation of Rhodamine B. The degradation efficiency using ternary photocatalyst reached 100% after 20 min of irradiation time. The reaction rate constant was estimated to 1.537, which was almost 29- and 20-folds higher than those of pure g-C3N4 and binary g-C3N4/BiVO4, respectively. The synergistic effect between BiVO4, RGO and g-C3N4 yielded g-C3N4/RGO/BiVO4 composites with Z-scheme charge transfer mechanism, promoting rapid separation and slow recombination of photogenerated electron–hole pairs with strong photocatalytic activity. Overall, these findings look promising for design of future Z-scheme photocatalysts for environmental degradation of organic dyes.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51472106), the Natural Science Foundation of Jilin Province (Grant Nos. 20180101065JC and 20190201129JC), and the Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (Grant Nos. 2019C045-3 and 2019C042-6).

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.

Supplementary material

10854_2019_2573_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1519 kb)

References

  1. 1.
    X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen, Y. Jiang, ACS Appl. Mater. Interfaces 7, 15285 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Xiang, J. Yu, J. Phys. Chem. Lett. 4, 753 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Shen, X. Xue, X. Wang, X. Hu, H. Tian, W. Zheng, RSC Adv. 7, 23319 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Liu, X. Xue, X. Wang, X. Hu, H. Tian, Sci. Rep. 7, 3637 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Appl. Catal. B 220, 337 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Mousavi, A. Habibi-Yangjeh, Adv. Powder Technol. 29, 94 (2018)Google Scholar
  7. 7.
    C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 1518 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater. 6, 1800911 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62, 1 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Crit. Rev. Environ. Sci. 48, 806 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Zhou, W. Wang, L. Zhang, H. Xu, W. Zhu, J. Phys. Chem. C 111, 13659 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, G. Tan, T. Liu, Appl. Catal. B 234, 37 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Marschall, Adv. Funct. Mater. 24, 2421 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Chen, L. Xun, P. Zhang, J. Zhang, B. Tian, Res. Chem. Intermed. 45, 3513 (2019)CrossRefGoogle Scholar
  15. 15.
    F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci. 405, 60 (2017)CrossRefGoogle Scholar
  16. 16.
    W.-K. Jo, N.C.S. Selvam, Chem. Eng. J. 317, 913 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Jiang, P. Xiao, L. Shao, D. Li, M. Chen, Ind. Eng. Chem. Res. 56, 8823 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Kim, D. Shin, W.J. Chang et al., Adv. Funct. Mater. 25, 2369 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Appl. Catal. B 262, 152 (2014)Google Scholar
  20. 20.
    J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15, 16883 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci. Mater. Electron. 29, 1719 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Habibi-Yangjeh, M. Mousavi, Adv. Powder Technol. 29, 1379 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, J. Taiwan Inst. Chem. E 87, 98 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S Rahim Pouran. Catal. Rev. 1, 34 (2019)Google Scholar
  25. 25.
    A. Habibi-Yangjeh, M. Mousavi, K. Nakata, J. Photochem. Photobiol. A 368, 120 (2019)CrossRefGoogle Scholar
  26. 26.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata, J. Photochem. Photobiol. A 374, 161 (2019)CrossRefGoogle Scholar
  27. 27.
    J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 39, 72 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Ou, S. Wan, Q. Zhong, Appl. Catal. B 221, 97 (2018)CrossRefGoogle Scholar
  30. 30.
    F. Jiang, T.H. Gunawan, J. Am. Chem. Soc. 137, 13691 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou, Appl. Catal. B 465, 168 (2015)Google Scholar
  32. 32.
    Q. Jia, A. Iwase, A. Kudo, Chem. Sci. 5, 1513 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Li, R. Shen, S. Ma, X. Chen, J. Xiea, Appl. Surf. Sci. 430, 53 (2018)CrossRefGoogle Scholar
  34. 34.
    W.-K. Jo, S. Kumar, S. Eslava, S. Tonda, Appl. Catal. B 239, 586 (2018)CrossRefGoogle Scholar
  35. 35.
    W. Wang, X. Huang, S. Wu, Appl. Catal. B 134, 293 (2013)CrossRefGoogle Scholar
  36. 36.
    H. Tian, C. Wan, W. Zheng, X. Hu, L. Qiao, X. Wang, RSC. Adv. 6, 84722 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Wang, C. Li, J. Ji, ACS. Sustain. Chem. Eng. 2, 2253 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Tian, M. Liu, W. Zheng, Appl. Catal. B 225, 468 (2018)CrossRefGoogle Scholar
  39. 39.
    J. Zhang, Y. Chen, X. Wang, Energ. Environ. Sci. 8, 3092 (2015)Google Scholar
  40. 40.
    F. Dong, Y. Li, Z. Wang, W.-K. Ho, Appl. Surf. Sci. 358, 393 (2015)CrossRefGoogle Scholar
  41. 41.
    Q. Han, B. Wang, Y. Zhao, C. Hu, L. Qu, Angew. Chem. Int. Edit. 54, 11433 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Edit. 58, 6164 (2019)CrossRefGoogle Scholar
  43. 43.
    M. Sumathi, A. Prakasam, P.M. Anbarasan, J. Mater. Sci.: Mater. Electron. 30, 10985 (2019)Google Scholar
  44. 44.
    Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Appl. Catal. B 221, 36 (2018)CrossRefGoogle Scholar
  45. 45.
    Y. Deng, L. Tang, G. Zeng, J. Colloid. Interfaces Sci. 509, 219 (2018)CrossRefGoogle Scholar
  46. 46.
    D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Chem. Eng. J. 290, 136 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Anee, B. Lin, C. Xue, Chin. J. Catal. 39, 654 (2018)CrossRefGoogle Scholar
  48. 48.
    X. Jia, R. Dai, Y. Sun, H. Song, X. Wu, J. Mater. Sci.: Mater. Electron. 27, 3791 (2015)Google Scholar
  49. 49.
    F. Chen, Q. Yang, Y. Wang, Appl. Catal. B 205, 133 (2017)CrossRefGoogle Scholar
  50. 50.
    X. Wu, J. Zhao, L. Wang, Appl. Catal. B 206, 501 (2017)CrossRefGoogle Scholar
  51. 51.
    D. Ke, T. Peng, L. Ma, P. Cai, K. Dai, Inorg. Chem. 48, 4685 (2009)CrossRefGoogle Scholar
  52. 52.
    R. Kanagadurai, R. Sankar, G. Sivanesan, S. Srinivasan, R. Rajasekaran, R. Jayavel, Mater. Chem. Phys. 108, 170 (2008)CrossRefGoogle Scholar
  53. 53.
    H. Tian, K. Shen, X. Hu, L. Qiao, W. Zheng, J. Alloys Compd. 691, 369 (2017)CrossRefGoogle Scholar
  54. 54.
    B. Lin, H. Li, H. An, Appl. Catal. B 220, 542 (2018)CrossRefGoogle Scholar
  55. 55.
    B. Lin, J. Li, B. Xu, Appl. Catal. B 243, 94 (2019)CrossRefGoogle Scholar
  56. 56.
    S. Yang, Y. Gong, J. Zhang, Adv. Mater. 25, 2452 (2013)CrossRefGoogle Scholar
  57. 57.
    M.Y. Ye, Z.H. Zhao, Z.F. Hu, Angew. Chem. Int. Edit. 56, 8407 (2017)CrossRefGoogle Scholar
  58. 58.
    Y. Wang, W. Wang, H. Mao, ACS Appl. Mater. Interfaces 6, 12698 (2014)CrossRefGoogle Scholar
  59. 59.
    W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B 219, 693 (2017)CrossRefGoogle Scholar
  60. 60.
    H. Li, Y. Sun, B. Cai, Appl. Catal. B 170, 206 (2015)CrossRefGoogle Scholar
  61. 61.
    P.D. Tran, S.K. Batabyal, S.S. Pramana, J. Barber, L.H. Wong, S.C. Loo, Nanoscale 4, 3875 (2012)CrossRefGoogle Scholar
  62. 62.
    Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, Small 9, 3336 (2013)Google Scholar
  63. 63.
    W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Nano Energy 13, 757 (2015)CrossRefGoogle Scholar
  64. 64.
    P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26, 4920 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Science and Laboratory of Materials Design and Quantum SimulationChangchun UniversityChangchunChina
  2. 2.Key Laboratory of Automobile Materials of MOE and School of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations