Advertisement

High-gain AlGaN/GaN visible-blind avalanche heterojunction phototransistors

  • Xinjia Qiu
  • Zhiyuan Song
  • Lijie Sun
  • Zhenhua Zhang
  • Zesheng Lv
  • Quan Wen
  • Hao JiangEmail author
Article
  • 45 Downloads

Abstract

We report the fabrication and characterization of the visible-blind AlGaN/GaN-based avalanche heterojunction phototransistors (AHPT) with a collector-up configuration. The fabricated devices with 150-μm-diameter active area exhibit low dark currents of less than 20 pA at collector-emitter voltage (VCE) below 5.0 V. Optical gain as high as 3.6 × 104 was obtained due to the combination of photon-induced current amplification and carrier multiplication at an operating voltage of VCE = 53.5 V, which is much lower than the avalanche breakdown voltage required for GaN-based visible-blind avalanche photodiodes. An ultraviolet–visible rejection ratio of more than 100 was measured at zero bias. Under VCE = 5 V, a peak responsivity of 0.91 A/W was obtained at 335 nm.

Notes

Acknowledgements

This work is supported by the National Key Research and Development Project (Grant No. 2016YFB0400901), the State Key Program of National Natural Science Foundation of China (Grant No. 61634002), Key Realm R&D Program of GuangDong Province, China (Grant 2019B010132004), and Guangdong Natural Science Foundation (Grant No. 2015A030312011).

References

  1. 1.
    G.J. Brown, P.P. Chow, M. Razeghi, J.J. Klaassen, J.M. Van Hove, A.M. Wowchak, C. Polley, D. King, Group III-nitride materials for ultraviolet detection applications. Proc. Spie. 3948, 295 (2000)CrossRefGoogle Scholar
  2. 2.
    L. Sun, J. Chen, J. Li, H. Jiang, AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl. Phys. Lett. 97, 191103 (2010)CrossRefGoogle Scholar
  3. 3.
    R.D. Dupuis, D. Yoo, J.-H. Ryou, Y. Zhang, S.-C. Shen, J. Limb, P.D. Yoder, A.D. Hanser, E. Preble, K. Evans, Growth and characterization of high-performance GaN and AlxGa1−xN ultraviolet avalanche photodiodes grown on GaN substrates. MRS Proc. 1040, Q03-03 (2011)Google Scholar
  4. 4.
    J.C. Carrano, T. Li, D.L. Brown, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C. Campbell, High-speed pin ultraviolet photodetectors fabricated on GaN. Electron. Lett. 34, 1779 (1998)CrossRefGoogle Scholar
  5. 5.
    J.B. Limb, D. Yoo, J.H. Ryou, W. Lee, S.C. Shen, R.D. Dupuis, M.L. Reed, C.J. Collins, M. Wraback, D. Hanser, E. Preble, N.M. Williams, K. Evans, GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 89, 011112 (2006)CrossRefGoogle Scholar
  6. 6.
    Z. Huang, J. Li, W. Zhang, H. Jiang, AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express 6, 054101 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Huang, D.J. Chen, H. Lu, K.X. Dong, R. Zhang, Y.D. Zheng, L. Li, Z.H. Li, Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 101, 253516 (2012)CrossRefGoogle Scholar
  8. 8.
    F.Y. Huang, H. Morkoç, GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity. Appl. Phys. Lett. 64, 405–407 (1994)CrossRefGoogle Scholar
  9. 9.
    J.C. Campbell, G.J. Qua, A.G. Dentai, Optical comparator: a new application for avalanche phototransistors. IEEE Trans. Electron Devices 30, 408–411 (1983)CrossRefGoogle Scholar
  10. 10.
    W. Yang, T. Nohava, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73, 978–980 (1998)CrossRefGoogle Scholar
  11. 11.
    M.L. Lee, J.K. Sheu, Y.-R. Shu, Ultraviolet bandpass Al0.17Ga0.83N∕GaN heterojunction phototransitors with high optical gain and high rejection ratio. Appl. Phys. Lett. 92, 053506 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, S. Tang, H. Wu, H. Wang, Z. Wu, H. Jiang, GaN/Al0.1Ga0.9N-based visible-blind double heterojunction phototransistor with a collector-up structure. Phys. Status Solidi. (a) 214, 1600821 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Campbell, A. Dentai, G. Qua, J. Ferguson, Avalanche InP/InGaAs heterojunction phototransistor. IEEE J. Quantum Electron. 19, 1134–1138 (1983)CrossRefGoogle Scholar
  14. 14.
    S.C. Lee, J.N. Kau, H.H. Lin, Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor. Appl. Phys. Lett. 45, 1114–1116 (1984)CrossRefGoogle Scholar
  15. 15.
    L.Y. Leu, J.T. Gardner, S.R. Forrest, A high gain, high bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 69, 1052–1062 (1991)CrossRefGoogle Scholar
  16. 16.
    S.-C. Shen, T.-T. Kao, H.-J. Kim, Y.-C. Lee, J. Kim, M.-H. Ji, J.-H. Ryou, T. Detchprohm, R.D. Dupuis, GaN/InGaN avalanche phototransistors. Appl. Phys. Express 8, 032101 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Xing, S.P. DenBaars, U.K. Mishra, Characterization of AlGaN∕GaNp-n diodes with selectively regrown n-AlGaN by metal-organic chemical-vapor deposition and its application to GaN-based bipolar transistors. J. Appl. Phys. 97, 113703 (2005)CrossRefGoogle Scholar
  18. 18.
    E. Bellotti, F. Bertazzi, A numerical study of carrier impact ionization in AlxGa1−xN. J. Appl. Phys. 111, 103711 (2012)CrossRefGoogle Scholar
  19. 19.
    E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, M. Razeghi, Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl. Phys. Lett. 96, 261107 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132–8139 (1995)CrossRefGoogle Scholar
  21. 21.
    S.M.N. Sze, Kwok K, Physics of Semiconductor Devices, 3rd ed. Chap. 5 (2006)Google Scholar
  22. 22.
    Q. Cai, Q. Li, M. Li, Y. Tang, J. Wang, J. Xue, D. Chen, H. Lu, R. Zhang, Y. Zheng, Performance modulation for back-illuminated AlGaN ultraviolet avalanche photodiodes based on multiplication scaling. IEEE Photonics J. 11, 1–7 (2019)Google Scholar
  23. 23.
    N. Chand, P.A. Houston, P.N. Robson, Gain of a heterojunction bipolar phototransistor. IEEE Trans. Electron Devices 32, 622–627 (1985)CrossRefGoogle Scholar
  24. 24.
    C.M. Sun, D.J. Han, L.Y. Sheng, X.R. Zhang, H.J. Zhang, R. Yang, L. Zhang, B.J. Ning, Punch through float-zone silicon phototransistors with high linearity and sensitivity. Nucl. Instrum. Methods Phys. Res., Sect. A 547, 437–449 (2005)CrossRefGoogle Scholar
  25. 25.
    N. Dyakonova, A. Dickens, M.S. Shur, R. Gaska, J.W. Yang, Temperature dependence of impact ionization in AlGaN–GaN heterostructure field effect transistors. Appl. Phys. Lett. 72, 2562–2564 (1998)CrossRefGoogle Scholar
  26. 26.
    Z.G. Shao, D.J. Chen, H. Lu, R. Zhang, D.P. Cao, W.J. Luo, Y.D. Zheng, L. Li, H. Li, High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35, 372–374 (2014)CrossRefGoogle Scholar
  27. 27.
    P.D. Wright, R.J. Nelson, T. Cella, High-gain InGaAsP-InP heterojunction phototransistors. Appl. Phys. Lett. 37, 192–194 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information TechnologySun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations