High-gain AlGaN/GaN visible-blind avalanche heterojunction phototransistors
- 45 Downloads
Abstract
We report the fabrication and characterization of the visible-blind AlGaN/GaN-based avalanche heterojunction phototransistors (AHPT) with a collector-up configuration. The fabricated devices with 150-μm-diameter active area exhibit low dark currents of less than 20 pA at collector-emitter voltage (VCE) below 5.0 V. Optical gain as high as 3.6 × 104 was obtained due to the combination of photon-induced current amplification and carrier multiplication at an operating voltage of VCE = 53.5 V, which is much lower than the avalanche breakdown voltage required for GaN-based visible-blind avalanche photodiodes. An ultraviolet–visible rejection ratio of more than 100 was measured at zero bias. Under VCE = 5 V, a peak responsivity of 0.91 A/W was obtained at 335 nm.
Notes
Acknowledgements
This work is supported by the National Key Research and Development Project (Grant No. 2016YFB0400901), the State Key Program of National Natural Science Foundation of China (Grant No. 61634002), Key Realm R&D Program of GuangDong Province, China (Grant 2019B010132004), and Guangdong Natural Science Foundation (Grant No. 2015A030312011).
References
- 1.G.J. Brown, P.P. Chow, M. Razeghi, J.J. Klaassen, J.M. Van Hove, A.M. Wowchak, C. Polley, D. King, Group III-nitride materials for ultraviolet detection applications. Proc. Spie. 3948, 295 (2000)CrossRefGoogle Scholar
- 2.L. Sun, J. Chen, J. Li, H. Jiang, AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl. Phys. Lett. 97, 191103 (2010)CrossRefGoogle Scholar
- 3.R.D. Dupuis, D. Yoo, J.-H. Ryou, Y. Zhang, S.-C. Shen, J. Limb, P.D. Yoder, A.D. Hanser, E. Preble, K. Evans, Growth and characterization of high-performance GaN and AlxGa1−xN ultraviolet avalanche photodiodes grown on GaN substrates. MRS Proc. 1040, Q03-03 (2011)Google Scholar
- 4.J.C. Carrano, T. Li, D.L. Brown, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C. Campbell, High-speed pin ultraviolet photodetectors fabricated on GaN. Electron. Lett. 34, 1779 (1998)CrossRefGoogle Scholar
- 5.J.B. Limb, D. Yoo, J.H. Ryou, W. Lee, S.C. Shen, R.D. Dupuis, M.L. Reed, C.J. Collins, M. Wraback, D. Hanser, E. Preble, N.M. Williams, K. Evans, GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 89, 011112 (2006)CrossRefGoogle Scholar
- 6.Z. Huang, J. Li, W. Zhang, H. Jiang, AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl. Phys. Express 6, 054101 (2013)CrossRefGoogle Scholar
- 7.Y. Huang, D.J. Chen, H. Lu, K.X. Dong, R. Zhang, Y.D. Zheng, L. Li, Z.H. Li, Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 101, 253516 (2012)CrossRefGoogle Scholar
- 8.F.Y. Huang, H. Morkoç, GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity. Appl. Phys. Lett. 64, 405–407 (1994)CrossRefGoogle Scholar
- 9.J.C. Campbell, G.J. Qua, A.G. Dentai, Optical comparator: a new application for avalanche phototransistors. IEEE Trans. Electron Devices 30, 408–411 (1983)CrossRefGoogle Scholar
- 10.W. Yang, T. Nohava, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73, 978–980 (1998)CrossRefGoogle Scholar
- 11.M.L. Lee, J.K. Sheu, Y.-R. Shu, Ultraviolet bandpass Al0.17Ga0.83N∕GaN heterojunction phototransitors with high optical gain and high rejection ratio. Appl. Phys. Lett. 92, 053506 (2008)CrossRefGoogle Scholar
- 12.L. Zhang, S. Tang, H. Wu, H. Wang, Z. Wu, H. Jiang, GaN/Al0.1Ga0.9N-based visible-blind double heterojunction phototransistor with a collector-up structure. Phys. Status Solidi. (a) 214, 1600821 (2017)CrossRefGoogle Scholar
- 13.J. Campbell, A. Dentai, G. Qua, J. Ferguson, Avalanche InP/InGaAs heterojunction phototransistor. IEEE J. Quantum Electron. 19, 1134–1138 (1983)CrossRefGoogle Scholar
- 14.S.C. Lee, J.N. Kau, H.H. Lin, Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor. Appl. Phys. Lett. 45, 1114–1116 (1984)CrossRefGoogle Scholar
- 15.L.Y. Leu, J.T. Gardner, S.R. Forrest, A high gain, high bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 69, 1052–1062 (1991)CrossRefGoogle Scholar
- 16.S.-C. Shen, T.-T. Kao, H.-J. Kim, Y.-C. Lee, J. Kim, M.-H. Ji, J.-H. Ryou, T. Detchprohm, R.D. Dupuis, GaN/InGaN avalanche phototransistors. Appl. Phys. Express 8, 032101 (2015)CrossRefGoogle Scholar
- 17.H. Xing, S.P. DenBaars, U.K. Mishra, Characterization of AlGaN∕GaNp-n diodes with selectively regrown n-AlGaN by metal-organic chemical-vapor deposition and its application to GaN-based bipolar transistors. J. Appl. Phys. 97, 113703 (2005)CrossRefGoogle Scholar
- 18.E. Bellotti, F. Bertazzi, A numerical study of carrier impact ionization in AlxGa1−xN. J. Appl. Phys. 111, 103711 (2012)CrossRefGoogle Scholar
- 19.E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, M. Razeghi, Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl. Phys. Lett. 96, 261107 (2010)CrossRefGoogle Scholar
- 20.M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132–8139 (1995)CrossRefGoogle Scholar
- 21.S.M.N. Sze, Kwok K, Physics of Semiconductor Devices, 3rd ed. Chap. 5 (2006)Google Scholar
- 22.Q. Cai, Q. Li, M. Li, Y. Tang, J. Wang, J. Xue, D. Chen, H. Lu, R. Zhang, Y. Zheng, Performance modulation for back-illuminated AlGaN ultraviolet avalanche photodiodes based on multiplication scaling. IEEE Photonics J. 11, 1–7 (2019)Google Scholar
- 23.N. Chand, P.A. Houston, P.N. Robson, Gain of a heterojunction bipolar phototransistor. IEEE Trans. Electron Devices 32, 622–627 (1985)CrossRefGoogle Scholar
- 24.C.M. Sun, D.J. Han, L.Y. Sheng, X.R. Zhang, H.J. Zhang, R. Yang, L. Zhang, B.J. Ning, Punch through float-zone silicon phototransistors with high linearity and sensitivity. Nucl. Instrum. Methods Phys. Res., Sect. A 547, 437–449 (2005)CrossRefGoogle Scholar
- 25.N. Dyakonova, A. Dickens, M.S. Shur, R. Gaska, J.W. Yang, Temperature dependence of impact ionization in AlGaN–GaN heterostructure field effect transistors. Appl. Phys. Lett. 72, 2562–2564 (1998)CrossRefGoogle Scholar
- 26.Z.G. Shao, D.J. Chen, H. Lu, R. Zhang, D.P. Cao, W.J. Luo, Y.D. Zheng, L. Li, H. Li, High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett. 35, 372–374 (2014)CrossRefGoogle Scholar
- 27.P.D. Wright, R.J. Nelson, T. Cella, High-gain InGaAsP-InP heterojunction phototransistors. Appl. Phys. Lett. 37, 192–194 (1980)CrossRefGoogle Scholar