Advertisement

Mechanical characteristics and fracture behavior of GaN/DBA die-attached during thermal aging: pressure-less hybrid Ag sinter joint and Pb–5Sn solder joint

  • Dongjin Kim
  • Chuantong ChenEmail author
  • Shijo Nagao
  • Katsuaki Suganuma
Article
  • 28 Downloads

Abstract

Ag sinter joining provides superior mechanical and thermal/electrical properties and is considered to become a leading next-generation wide band-gap (WBG) die-attach material. However, the microstructural evolution and mechanical characteristics of Ag sinter joining when subjected to high temperature have never been directly compared to those same characteristics of solder materials. In this study, we have evaluated the high-temperature and long-term reliability of a GaN/DBA die-attached module by pressure-less Ag sinter joining and Pb–5Sn solder in a harsh thermal aging test. Both the Ag sinter joining and Pb–5Sn solder were subjected to a thermal aging test of up to 1000 h at 250 °C. Initial shear strength of the Ag sinter joint exceeded 42 MPa, and increased stably up to 1000 h without any defects such as interface oxidation, diffusion, or mechanical deformation. The increase in shear strength of the Ag sinter joints was the result of necking growth of the sintered Ag during thermal aging. On the other hand, the shear strength of the Pb–5Sn joints exhibited substantially decreased shear strength (by 60%) after aging 250 h. NixSnx intermetallic compounds (IMC) were also formed and serious interface degradation occurred during the aging process. These microstructure changes and mechanical characteristics have an important influence on mechanical reliability and, with that in mind, the tendency of fracture mechanism was investigated in detail by SEM–EDX. This study systematically examines the fracture mechanism on the microstructure of a DBA substrate and on high-temperature packaging during thermal aging tests for WBG semiconductor device applications.

Notes

Acknowledgments

This work was supported by the JST Advanced Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610). The author is thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

Supplementary material

10854_2019_2563_MOESM1_ESM.docx (289 kb)
Electronic supplementary material 1 (DOCX 289 kb)

References

  1. 1.
    F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R.L. Nigro, F. Giannazzo, A. Patti, M. Saggio, Recent advances on dielectrics technology for SiC and GaN power devices. Appl. Surf. Sci. 301, 9–18 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Le-Huu, F.F. Schrey, M. Grieb, H. Schmitt, V. Häublein, A.J. Bauer, H. Ryssel, L. Frey, NMOS logic circuits using 4H-SiC MOSFETs for high temperature applications. Mater. Sci. Forum. 645–6648, 1143–1146 (2010).  https://doi.org/10.4028/www.scientific.net/MSF.645-648.1143 CrossRefGoogle Scholar
  3. 3.
    J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014).  https://doi.org/10.1109/TPEL.2013.2268900 CrossRefGoogle Scholar
  4. 4.
    H. Okumura, Present Status and Future Prospect of Widegap Semiconductor High-Power Devices (2006).  https://doi.org/10.1143/JJAP.45.7565 CrossRefGoogle Scholar
  5. 5.
    D. Kim, C. Chen, C. Pei, Z. Zhang, S. Nagao, A. Suetake, T. Sugahara, K. Suganuma, Thermal shock reliability of a GaN die-attach module on DBA substrate with Ti/Ag metallization by using micron/submicron Ag sinter paste. Jpn. J. Appl. Phys. 58, SBBD15 (2019)CrossRefGoogle Scholar
  6. 6.
    T. Kim, T. Funaki, Thermal measurement and analysis of packaged SiC MOSFETs. Thermochim. Acta 633, 31–36 (2016).  https://doi.org/10.1016/j.tca.2016.03.004 CrossRefGoogle Scholar
  7. 7.
    S. Noh, C. Choe, C. Chen, K. Suganuma, Heat-resistant die-attach with cold-rolled Ag sheet. Appl. Phys. Express 11, 016501 (2018).  https://doi.org/10.7567/apex.11.016501 CrossRefGoogle Scholar
  8. 8.
    K.Y. Wong, W. Chen, X. Liu, C. Zhou, K.J. Chen, GaN smart power IC technology. Phys. Status Solidi Basic Res. 247, 1732–1734 (2010).  https://doi.org/10.1002/pssb.200983453 CrossRefGoogle Scholar
  9. 9.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824–832 (2010).  https://doi.org/10.1007/s11663-010-9365-5 CrossRefGoogle Scholar
  10. 10.
    R.W. Johnson, I. Fellow, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004).  https://doi.org/10.1109/tepm.2004.843109 CrossRefGoogle Scholar
  11. 11.
    L. Bartolomeo, L. Abbatelli, M. Macauda, F. Di, G. Catalisano, M. Ryzek, D. Kohout, Wide band gap materials : revolution in automotive power electronics. in International Electric Vehicle Technology & Automobile Power Electronics Japan Conference (EVTec & APE Japan, 2016) pp. 2–6Google Scholar
  12. 12.
    M. Hoshi, Electric vehicles and expectations for wide bandgap power devices, in: Proc. Int. Symp. Power Semicond. Devices ICs, 2016: pp. 5–8.  https://doi.org/10.1109/ispsd.2016.7520765
  13. 13.
    C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, Low-stress design of bonding structure and its thermal shock performance (− 50 to 250 °C) in SiC/DBC power die-attached modules. J. Mater. Sci.: Mater. Electron. 29, 14335–14346 (2018).  https://doi.org/10.1007/s10854-018-9568-0 CrossRefGoogle Scholar
  14. 14.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, G. Izuta, Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier. J. Electron. Mater. 38, 2668–2675 (2009).  https://doi.org/10.1007/s11664-009-0928-7 CrossRefGoogle Scholar
  15. 15.
    J. Lee, K. Kim, K. Suganuma, J. Takenaka, K. Hagio, Interfacial properties of Zn–Sn alloys as high temperature lead-free solder on Cu substrate. Mater. Trans. 46, 2413–2418 (2005).  https://doi.org/10.2320/matertrans.46.2413 CrossRefGoogle Scholar
  16. 16.
    S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices. J. Mater. Sci.: Mater. Electron. 24, 2593–2601 (2013).  https://doi.org/10.1007/s10854-013-1138-x CrossRefGoogle Scholar
  17. 17.
    E. George, M. Pecht, Microelectronics Reliability RoHS compliance in safety and reliability critical electronics. Cost Reliab. MR. 65, 1–7 (2016).  https://doi.org/10.1016/j.microrel.2016.07.150 CrossRefGoogle Scholar
  18. 18.
    S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry : RoHS exemptions and alternatives High lead solder (over 85%) solder in the electronics industry : RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 26(6), 4021–4030 (2015).  https://doi.org/10.1007/s10854-015-2940-4 CrossRefGoogle Scholar
  19. 19.
    J. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, K. Suganuma, Die-attaching silver paste based on a novel solvent for high-power semiconductor devices. J. Mater. Sci. 51, 3422–3430 (2016).  https://doi.org/10.1007/s10853-015-9659-8 CrossRefGoogle Scholar
  20. 20.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012).  https://doi.org/10.1016/j.microrel.2011.07.088 CrossRefGoogle Scholar
  21. 21.
    Z.Z. Zhang, G.Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002).  https://doi.org/10.1109/TEPM.2002.807719 CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compds. 780, 435–442 (2019).  https://doi.org/10.1016/j.jallcom.2018.11.251 CrossRefGoogle Scholar
  23. 23.
    K. Hromadka, J. Stulik, J. Reboun, A. Hamacek, DBC technology for low cost power electronic substrate manufacturing. Procedia Eng. 69, 1180–1183 (2014).  https://doi.org/10.1016/j.proeng.2014.03.107 CrossRefGoogle Scholar
  24. 24.
    A. Lindemann, G. Strauch, Properties of direct aluminium bonded substrates for power semiconductor components, PESC Rec.—IEEE Annu. Power Electron. Spec. Conf. 6 (2004) 4171–4177.  https://doi.org/10.1109/pesc.2004.1354737.
  25. 25.
    H. He, R. Fu, D. Wang, X. Song, M. Jing, A new method for preparation of direct bonding copper substrate on Al2O3. Mater. Lett. 61, 4131–4133 (2007).  https://doi.org/10.1016/j.matlet.2007.01.036 CrossRefGoogle Scholar
  26. 26.
    Y. Mei, G.Q. Lu, X. Chen, C. Gang, S. Luo, D. Ibitayo, Investigation of post-etch copper residue on direct bonded copper (DBC) substrates. J. Electron. Mater. 40, 2119–2125 (2011).  https://doi.org/10.1007/s11664-011-1716-8 CrossRefGoogle Scholar
  27. 27.
    H. Zhang, S. Nagao, K. Suganuma, H.J. Albrecht, K. Wilke, Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci.: Mater. Electron. 27, 1337–1344 (2016).  https://doi.org/10.1007/s10854-015-3894-2 CrossRefGoogle Scholar
  28. 28.
    H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017).  https://doi.org/10.1007/s11664-016-5069-1 CrossRefGoogle Scholar
  29. 29.
    C. Choe, C. Chen, S. Noh, Thermal shock performance of DBA/AMB substrates plated by Ni and Ni–P layers for high-temperature applications of power device modules. Materials (Basel). 11, 2394 (2018).  https://doi.org/10.3390/ma11122394 CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Xu, Y. Liu, Reliability modeling analysis of a power module, in: 2013 14th Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE 2013, 2013: pp. 1–11.  https://doi.org/10.1109/eurosime.2013.6529930.
  31. 31.
    J. Dai, J. Li, P. Agyakwa, M. Corfield, C.M. Johnson, Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling. IEEE Trans. Device Mater. Reliab. 18, 256–265 (2018).  https://doi.org/10.1109/TDMR.2018.2825386 CrossRefGoogle Scholar
  32. 32.
    M. Knoerr, S. Kraft, A. Schletz, Reliability Assessment of Sintered Nano-Silver Die Attachment for Power Semiconductors, in: 2010 12th Electron. Packag. Technol. Conf., IEEE, 2010, pp. 56–61.Google Scholar
  33. 33.
    Y. Jeon, K. Paik, Studies on Ni-Sn intermetallic compound and P-rich Ni layer at the electroless nickel UBM—solder interface and their effects on flip chip solder joint reliability, in: components pp. 1–7.  https://doi.org/10.1109/ectc.2001.928003
  34. 34.
    A.M. Minor, J.W. Morris, Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. Metall. Mater. Trans. A 31, 798–800 (2000).  https://doi.org/10.1007/s11661-000-0022-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Adaptive Machine Systems, Graduate School of EngineeringOsaka UniversitySuita-shiJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki-shiJapan

Personalised recommendations