Advertisement

Facile synthesis of 5-aminoisophthalic acid functionalized magnetic nanoparticle for the removal of methylene blue

  • Lu Qi
  • Zou Jiaqi
  • Dai YiminEmail author
  • Liu Danyang
  • Wang Shengyun
  • Chen Ling
Article
  • 7 Downloads

Abstract

In this paper, a 5-aminoisophthalic acid (APTA) functionalized magnetic composite nanoparticles (Fe3O4@SiO2-APTA) are reported for adsorbing methylene blue (MB) from wastewater. The nanoparticles were analyzed by high resolution transmission electron microscopy, scanning electron microscopy, fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, N2 adsorption/desorption, and vibrating sample magnetometer. The factors affecting the adsorption of methylene blue, initial concentration, adsorption time and pH of the solution were studied in detail. It was found that the adsorption capacity of magnetic composite nanoparticles depended on the pH of the solution. The results show that Fe3O4@SiO2-APTA exhibits an excellent adsorption performance with the maximum adsorption capacity (46.24 mg/g) for MB at pH 11. In addition, experimental results show that the adsorption of MB on Fe3O4@SiO2-APTA nanoparticles conforms to the pseudo-second-order kinetic model the Freundlich isotherm model, and reaches the adsorption equilibrium within 30 min. After consecutive use five times, adsorption percentages of MB were retained 70%, showing a good reusability of the adsorbent. The superior adsorption performances of Fe3O4@SiO2-APTA are attributed to electrostatic interaction, hydrogen bonding, and chemical sorption compared with recent adsorbents. Therefore, this work provides a promising approach for removal of MB with high efficiency, low cost.

Notes

Acknowledgments

The authors greatly acknowledge the financial support provided by the National Natural Science Foundation of China (21671026), the Hunan Provincial Natural Science Foundation of China (2019JJ40310), and Scientific Research Key Fund of Hunan Provincial Education Department (15A001).

References

  1. 1.
    S. Vahidhabanu, A.A. Idowu, D. Karuppasamy, B.R. Babu, M. Vineetha, Microwave initiated facile formation of sepiolite-poly(dimethylsiloxane) nanohybrid for effective removal of congo red dye from aqueous solution. ACS Sustain. Chem. Eng. 5, 10361–10370 (2017)CrossRefGoogle Scholar
  2. 2.
    U. Pal, A. Sandoval, S.I.U. Madrid, G. Corro, V. Sharma, P. Mohanty, Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution. Chemosphere 163, 142–152 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Hu, Z. Yang, L. Cui, Y. Li, H.H. Ngo, Y. Wang, Q. Wei, H. Ma, L. Yan, B. Du, Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 287, 545–556 (2016)CrossRefGoogle Scholar
  4. 4.
    N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9, S707–S716 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Zhao, E. Repo, D. Yin, Y. Meng, S. Jafari, M. Sillanpaa, EDTA-cross-linked beta-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ. Sci. Technol. 49, 10570–10580 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Sharma, A. Hasan, N. Kumar, L.M. Pandey, Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ. Sci. Pollut. Res. Int. 25, 21605–21615 (2018)CrossRefGoogle Scholar
  7. 7.
    S.M. Xu, J.L. Wang, R.L. Wu, J.D. Wang, H. Li, Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chem. Eng. J. 117, 161–167 (2006)CrossRefGoogle Scholar
  8. 8.
    W. Wang, Z. Ding, M. Cai, H. Jian, Z. Zeng, F. Li, J.P. Liu, Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites. Appl. Surf. Sci. 346, 348–353 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Hongyang, C. Burger, B.S. Hsiao, B. Chu, Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J. Mater. Chem. 21, 7507–7510 (2011)CrossRefGoogle Scholar
  10. 10.
    A.R. Khataee, Photocatalytic removal of CI Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modelling. Environ. Technol. 30, 1155–1168 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dyes Pigm. 134, 487–497 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Mohan, C. Pittman, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006)CrossRefGoogle Scholar
  14. 14.
    S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interf. Sci. 280, 322–333 (2004)CrossRefGoogle Scholar
  15. 15.
    B. Yu, X. Zhang, J. Xie, R. Wu, X. Liu, H. Li, F. Chen, H. Yang, Z. Ming, S. Yang, Magnetic graphene sponge for the removal of methylene blue. Appl. Surf. Sci. 351, 765–771 (2015)CrossRefGoogle Scholar
  16. 16.
    F. Wang, L. Zhang, Y. Wang, X. Liu, S. Rohani, J. Lu, Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II). Appl. Surf. Sci. 420, 970–981 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Chen, J. Feng, W. Yan, Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue. J. Colloid Interf. Sci. 475, 26–35 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Oroujeni, B. Kaboudin, W. Xia, P. Jönsson, D.A. Ossipov, Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Prog. Org. Coat. 114, 154–161 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Jouyandeh, S.M.R. Paran, M. Shabanian, S. Shabanian, H. Vahabi, M. Badawi, K. Formela, D. Puglia, M.R. Saeb, Curing behavior of epoxy/Fe3O4 nanocomposites: a comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Prog. Org. Coat. 123, 10–19 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Zhao, J. Li, L. Zhao, S. Zhang, Y. Huang, X. Wua, X. Wanga, Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 235, 275–283 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Chen, H. Chen, Removal of anionic dyes from an aqueous solution by a magnetic cationic adsorbent modified with DMDAAC. New J. Chem. 42, 7262–7271 (2018)CrossRefGoogle Scholar
  22. 22.
    M.M. Galangash, Z.N. Kolkasaraei, A. Ghavidast, M. Shirzad-Siboni, Facile synthesis of methyl propylaminopropanoate functionalized magnetic nanoparticles for removal of acid red 114 from aqueous solution. RSC Adv. 6, 113492–113502 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Sun, S. Hu, H. Sun, H. Guo, H. Zhu, M. Liu, H. Sun, Malachite green adsorption onto Fe3O4@SiO2-NH2: isotherms, kinetic and process optimization. RSC Adv. 5, 11837–11844 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, J. Li, S. Zhang, X. Wang, Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Adv. 4, 32710–32717 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Zhu, P. Shi, S. Sun, M. Rui, Construction of rGO/Fe3O4/PANI nanocomposites and its corrosion resistance mechanism in waterborne acrylate-amino coating. Prog. Org. Coat. 133, 117–124 (2019)CrossRefGoogle Scholar
  26. 26.
    Y. Dai, J. Zou, D. Liu, L. Niu, L. Zhou, Y. Zhou, X. Zhang, Preparation of Congo red functionalized Fe3O4@SiO2 nanoparticle and its application for the removal of methylene blue. Colloid Surf. A: Physicochem. Eng. Aspects. 550, 90–98 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Wu, G. Zhu, J. Fan, J. Wang, Preparation of neutral red functionalized Fe3O4@SiO2 and its application to the magnetic solid phase extraction of trace Hg(II) from environmental water samples. RSC Adv. 6, 86428–86435 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Li, J. Lu, S. Li, Y. Tong, B. Ye, Synthesis of magnetic microspheres with sodium alginate and activated carbon for removal of methylene blue. Materials 10, 84–97 (2017)CrossRefGoogle Scholar
  29. 29.
    Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, B. Dong, Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions. J. Hazard. Mater. 254, 157–165 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Maleki, Z. Alrezvani, S. Maleki, Design, preparation and characterization of urea-functionalized Fe3O4/SiO2 magnetic nanocatalyst and application for the one-pot multicomponent synthesis of substituted imidazole derivatives. Catal. Commun. 69, 29–33 (2015)CrossRefGoogle Scholar
  31. 31.
    B. Huang, Y. Liu, B. Li, G. Zeng, X. Hu, B. Zheng, T. Li, L. Jiang, X. Tan, L. Zhou, Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(VI) removal. RSC Adv. 5, 106339–106349 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Wang, B. Chen, Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 281, 379–388 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Yan, H. Li, H. Yang, A. Li, R. Cheng, Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chem. Eng. J. 223, 402–411 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Sheng, P. Yang, Y. Tang, Q. Hu, H. Li, X. Ren, B. Hu, X. Wang, Y. Huang, New insights into the primary roles of diatomite in the enhanced sequestration of UO2 + 2by zero valent iron nanoparticles: an advanced approach utilizing XPS and EXAFS. Appl. Catal. B Environ. 193, 189–197 (2016)CrossRefGoogle Scholar
  35. 35.
    U. Kalapathy, A. Proctor, J. Shultz, A simple method for production of pure silica from rice hull ash. Bioresour. Technol. 71, 257–262 (2000)CrossRefGoogle Scholar
  36. 36.
    J. Li, H. Zhao, J. Wang, N. Li, M. Wu, Q. Zhang, Y. Du, Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy. 62, 876–882 (2019)CrossRefGoogle Scholar
  37. 37.
    X. Chen, T. Shi, K. Zhong, G. Wu, Y. Lu, Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres. Chem. Eng. J 379, 122240 (2020)CrossRefGoogle Scholar
  38. 38.
    Y. Zhao, D. Zhao, C. Chen, X. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J. Colloid Interf. Sci. 405, 211–217 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li, X. Wang, Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans. 42, 14710–14717 (2013)CrossRefGoogle Scholar
  40. 40.
    W. Konicki, I. Pełech, E. Mijowska, I. Jasinska, Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: kinetics, equilibrium and thermodynamics. Chem. Eng. J. 210, 87–95 (2012)CrossRefGoogle Scholar
  41. 41.
    T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196, 109–114 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188–195 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Zhang, C. Zhou, W. Zhou, A. Lei, Q. Zhang, Q. Wan, B. Zou, Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol. 87, 86–90 (2011)CrossRefGoogle Scholar
  44. 44.
    G.L. Dotto, J.M. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of methylene blue by ultrasonic surface modified chitin. J. Colloid Interf. Sci. 446, 133–140 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Ye, W. Jin, Q. Huang, Y. Hu, Y. Li, B. Li, KGM-based magnetic carbon aerogels matrix for the uptake of methylene blue and methyl orange. Int. J. Biol. Macromol. 92, 1169–1174 (2016)CrossRefGoogle Scholar
  46. 46.
    J. Zou, Y. Dai, D. Liu, S. Wang, L. Zhou, Y. Zhou, Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloid Surf. A: Physicochem. Eng. Aspects 572, 58–66 (2019)CrossRefGoogle Scholar
  47. 47.
    Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun, S. Wang, Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012)CrossRefGoogle Scholar
  48. 48.
    Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742 (2000)CrossRefGoogle Scholar
  49. 49.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  50. 50.
    J. Li, Q. Zhang, J. Feng, W. Yan, Synthesis of PPy-modified TiO2 composite in H2SO4 solution and its novel adsorption characteristics for organic dyes. Chem. Eng. J. 225, 766–775 (2013)CrossRefGoogle Scholar
  51. 51.
    P. Sharma, N. Hussain, D.J. Borah, M.R. Das, Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: a comparative study. J. Chem. Eng. Data 58, 3477–3488 (2013)CrossRefGoogle Scholar
  52. 52.
    L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, L. Zhang, The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem. Eng. J. 246, 88–96 (2014)CrossRefGoogle Scholar
  53. 53.
    Y.S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations