Advertisement

Host sensitized tunable luminescence of single phase white light emitting Ca2Sb2O7:Eu3+ phosphors

  • Anns George
  • Subash Gopi
  • E. Sreeja
  • T. Krishnapriya
  • A. C. Saritha
  • Cyriac Joseph
  • N. V. Unnikrishnan
  • P. R. BijuEmail author
Article
  • 19 Downloads

Abstract

A series of Eu3+ doped calcium antimonate (Ca(2−x)Sb2O7:xEu3+, x = 0, 0.05, 0.07, 0.09, 0.1, 0.2 mol%) phosphors were synthesized via high-temperature solid-state reaction method. The structural and optical characterizations of the prepared samples were done using X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet–visible-near infrared (UV–Vis-NIR) absorption spectroscopy, photoluminescence excitation and emission spectra, and luminescence decay measurements of the phosphors. X-ray diffraction spectrum confirmed the phase purity and orthorhombic weberite structure of the samples. Excitation spectrum suggests that the prepared phosphors can be effectively excited by UV (300 nm/330 nm), NUV (393 nm) and blue (464 nm) light-emitting diodes (LEDs). Under 330 nm ultraviolet excitation, calcium antimonate host exhibits a broad blue emission band, while Eu3+ doped Ca2Sb2O7 samples exhibit blue emission band of host and characteristic emission bands of Eu3+ ions resulting in a tunable near white light emission. The energy transfer mechanism from host to activator ions is explained. Under rare earth excitations of 393 nm and 464 nm, the samples exhibit strong reddish-orange emission. Concentration dependence of emission intensity was studied and the critical energy transfer distance of Eu3+ ions in Ca(2−x)Sb2O7:xEu3+ phosphors was calculated. The concentration quenching of emission intensity was found to be due to dipole–dipole interaction. The Commission International de L’Eclairage coordinates (CIE), color purity, correlated color temperature (CCT), and luminescence lifetimes of the samples were also evaluated. The results indicate that through careful engineering of the dopant concentration and also by changing the excitation wavelength, emission color can be tuned from red to white which envisages the prepared phosphors as a promising candidate in solid-state lighting and display fields.

Notes

Acknowledgements

The author Anns George is thankful to University Grants Commission, Govt. of India for the award of CSIR-UGC Junior Research fellowship. The authors Subash Gopi and Sreeja E are thankful to University Grants Commission, Govt. of India for the award of UGC BSR fellowship. The authors acknowledge the Department of Science and Technology, Govt. of India for the financial assistance through DST-PURSE (SR/S9/Z-23/2010/22 (C,G)) program. The authors acknowledge MoU-DAE-BRNS Project (No. 2009/34/36/BRNS/3174), Department of Physics, S.V. University, Tirupati, India for extending the experimental facility for decay measurements.

References

  1. 1.
    H. Zhu, C.C. Lin, W. Luo et al., Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 5, 4312 (2014).  https://doi.org/10.1038/ncomms5312 CrossRefGoogle Scholar
  2. 2.
    Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Single-component and warm-white-emitting phosphor transfer, and tunable color. Inorg. Chem. 53, 11457–11466 (2014).  https://doi.org/10.1021/ic501284y CrossRefGoogle Scholar
  3. 3.
    W.Q. Yang, H.G. Liu, M. Gao et al., Dual-luminescence-center single-component white-light Sr2V2O7:Eu3+ phosphors for white LEDs. Acta Mater. 61(13), 5096–5104 (2013).  https://doi.org/10.1016/j.actamat.2013.03.036 CrossRefGoogle Scholar
  4. 4.
    K.T. Bicanic, X. Li, R.P. Sabatini et al., Design of phosphor white light systems for high-power applications. ACS Photon. 3(12), 2243–2248 (2016).  https://doi.org/10.1021/acsphotonics.6b00681 CrossRefGoogle Scholar
  5. 5.
    K. Li, M. Shang, H. Lian, J. Lin, Recent development in phosphors with different emitting colors via energy transfer. J. Mater. Chem. C 4(24), 5507–5530 (2016).  https://doi.org/10.1039/C6TC00436A CrossRefGoogle Scholar
  6. 6.
    A. Dwivedi, K. Mishra, S.B. Rai, Multi-modal luminescence properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors—Upconversion, downshifting and quantum cutting for spectral conversion. J. Phys. D 48(43), 435103 (2015).  https://doi.org/10.1088/0022-3727/48/43/435103 CrossRefGoogle Scholar
  7. 7.
    C. Tannous, R.L. Comstock, Magnetic information-storage materials (Springer, Cham, 2017).  https://doi.org/10.1007/978-3-319-48933-9_49 CrossRefGoogle Scholar
  8. 8.
    E. Song, Y. Zhou, X.B. Yang et al., Highly efficient and stable narrow-band red phosphor Cs2SiF6:Mn4+ for high-power warm white LED applications. ACS Photon. 4(10), 2556–2565 (2017).  https://doi.org/10.1021/acsphotonics.7b00852 CrossRefGoogle Scholar
  9. 9.
    X. Gao, H. Liu, X. Yang, Y. Tian, X. Lu, L. Han, A novel Eu 3+/Eu 2+ co-doped MgSrLa8 (SiO4)6O2 single-phase white light phosphor for white LEDs. RSC Adv. 7(3), 1711–1717 (2017).  https://doi.org/10.1039/C6RA25792E CrossRefGoogle Scholar
  10. 10.
    T. Leow, H. Liu, R. Hussin et al., Effects of Eu3+ and Dy3+ doping or co-doping on optical and structural properties of BaB2Si2O8 phosphor for white LED applications. J. Rare Earths 34(1), 21–29 (2016).  https://doi.org/10.1016/S1002-0721(14)60573-1 CrossRefGoogle Scholar
  11. 11.
    J. Zhong, D. Chen, Y. Zhou et al., New Eu 3+ -activated perovskite La0.5Na0.5TiO3 phosphors in glass for warm white light emitting diodes. Dalton Trans. 45(11), 4762–4770 (2016).  https://doi.org/10.1039/C5DT04909A CrossRefGoogle Scholar
  12. 12.
    J. Wang, H. Lin, Q. Huang et al., Structure and luminescence behavior of a single-ion activated single-phased Ba2Y3(SiO4)3 F: Eu white-light phosphor. J. Mater. Chem. C 5, 1789–1797 (2017).  https://doi.org/10.1039/C6TC04350J CrossRefGoogle Scholar
  13. 13.
    K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, J. Lin, Host-sensitized luminescence in LaNbO4:Ln3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors. Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).  https://doi.org/10.1039/C4CP03894K CrossRefGoogle Scholar
  14. 14.
    M. Shang, C. Li, J. Lin, How to produce white light in a single-phase host? Chem. Soc. Rev. 43(5), 1372–1386 (2014).  https://doi.org/10.1039/C3CS60314H CrossRefGoogle Scholar
  15. 15.
    H. Zhu, C.C. Lin, W. Luo et al., Color tuning of direct white light of lanthanum aluminate with mixed-valence europium. Acta Mater. 5(11), 5096–5104 (2014).  https://doi.org/10.1016/j.actamat.2013.03.036 CrossRefGoogle Scholar
  16. 16.
    L. Han, G. Liu, X. Dong, J. Wang, W. Yu, Single-phase and warm white-light-emitting phosphors CaLa2−x−y(MoO4)4: xDy3+, yEu3+: synthesis, luminescence and energy transfer. J. Lumin. 178, 61–67 (2016).  https://doi.org/10.1016/j.jlumin.2016.05.043 CrossRefGoogle Scholar
  17. 17.
    S.P. Feofilov, Y. Zhou, J.Y. Jeong, D.A. Keszler, R.S. Meltzer, Energy transfer from the host excitations to Ce3+ ions in scandium borate. J. Lumin. 125(1–2), 80–84 (2007).  https://doi.org/10.1016/j.jlumin.2006.08.048 CrossRefGoogle Scholar
  18. 18.
    V.P. Prakashan, M.S. Sajna, G. Gejo et al., Perceiving impressive optical properties of ternary SiO2–TiO2–ZrO2:Eu3+ sol-gel glasses with high reluctance for concentration quenching: An experimental approach. J Non Cryst Solids. 482, 116–125 (2018).  https://doi.org/10.1016/j.jnoncrysol.2017.12.027 CrossRefGoogle Scholar
  19. 19.
    K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015).  https://doi.org/10.1016/j.ccr.2015.02.015 CrossRefGoogle Scholar
  20. 20.
    S. Gopi, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, P.R. Biju, Luminescence and phonon sideband analysis of Eu3+ doped alkali fluoroborate glasses for red emission applications. J. Mater. Sci. 29(1), 674–682 (2018).  https://doi.org/10.1007/s10854-017-7961-8 CrossRefGoogle Scholar
  21. 21.
    N. Zhang, C. Guo, J. Zheng, X. Su, J. Zhao, Synthesis, electronic structures and luminescent properties of Eu3+ doped KGdTiO4. J Mater. Chem. C 2(20), 3988–3994 (2014).  https://doi.org/10.1039/C3TC32472A CrossRefGoogle Scholar
  22. 22.
    R. Cao, T. Fu, D. Peng, C. Cao, W. Ruan, X. Yu, Synthesis, energy transfer and tunable emission properties of SrSb2O6:Eu3+, Bi3+ phosphor. Spectrochim. Acta, Part A 169, 192–196 (2016).  https://doi.org/10.1016/j.saa.2016.06.049 CrossRefGoogle Scholar
  23. 23.
    K.-S. Choi, J.A. Hanko, M.G. Kanatzidis, Anonymous. Eightfold superstructure in K2Gd2Sb2Se9 and K2La2Sb2S9 caused by three-dimensional ordering of the 5 s2 Lone pair of Sb3+ ions. J. Solid State Chem. 147(1), 309–319 (1999).  https://doi.org/10.1006/jssc.1999.8287 CrossRefGoogle Scholar
  24. 24.
    S. Bahfenne, R.L. Frost, A review of the vibrational spectroscopic studies of arsenite, antimonite, and antimonate minerals. Appl. Spectrosc. Rev. 45(2), 101–129 (2010).  https://doi.org/10.1080/05704920903435839 CrossRefGoogle Scholar
  25. 25.
    R. Cao, T. Fu, Y. Cao et al., Tunable emission, energy transfer, and charge compensation in the CaSb2O6:Eu3+, Bi3+ phosphor. J. Mater. Sci. 27(4), 3514–3519 (2016).  https://doi.org/10.1007/s10854-015-4186-6 CrossRefGoogle Scholar
  26. 26.
    L. Chen, Y. Long, Y. Qin, W. Li, Co-precipitation preparation, characterization and optical properties of blue CaSb2O6: Bi3+ nano-phosphor. Mater. Lett. 102–103, 59–61 (2013).  https://doi.org/10.1016/j.matlet.2013.03.109 CrossRefGoogle Scholar
  27. 27.
    L. Shi, J. Zhang, H. Li et al., Afterglow luminescence properties and mechanism of novel orange afterglow phosphor: Ca2Sb2O7:Sm3+. J. Alloys Compd. 579, 82–85 (2013).  https://doi.org/10.1016/j.jallcom.2013.05.056 CrossRefGoogle Scholar
  28. 28.
    S. Yao, X. Zhou, Y. Huang, Z. Wang, Y. Long, W. Li, Luminescent properties of Bi3+-activated Ca2Sb2O7 nano-phosphor prepared by co-precipitation method. J. Alloys Compd. 653, 345–350 (2015).  https://doi.org/10.1016/j.jallcom.2015.09.047 CrossRefGoogle Scholar
  29. 29.
    L. Chelazzi, T. Boffa Ballaran, F. Nestola, L. Bindi, P. Bonazzi, High-pressure behavior of the synthetic Ca2Sb2O7 weberite-type compound. Solid State Sci. 13(5), 1092–1095 (2011).  https://doi.org/10.1016/j.solidstatesciences.2011.01.013 CrossRefGoogle Scholar
  30. 30.
    L. Cai, J.C. Nino, Complex ceramic structures. I. Weberites. Acta Crystallogr. Sect. B 65(3), 269–290 (2009).  https://doi.org/10.1107/S0108768109011355 CrossRefGoogle Scholar
  31. 31.
    J. Zhong, D. Chen, X. Wang et al., Li6Sr(La1−xEux)2Sb2O12 (0 < x≤1.0) solid-solution red phosphors for white light-emitting diodes. Ceram. Int. 41, 12045–12051 (2015).  https://doi.org/10.1016/j.ceramint.2015.06.019 CrossRefGoogle Scholar
  32. 32.
    P.R. Mohan, S. Gopi, V. Vidyadharan et al., Synthesis and luminescence characteristics of CaB2O4:Er3+, Li+ phosphor. J. Lumin. 187, 113–120 (2017).  https://doi.org/10.1016/j.jlumin.2017.03.005 CrossRefGoogle Scholar
  33. 33.
    J. Zhang, M. Chen, Y. Gao, Investigation on luminescence of Na3Ca6(PO4)5:Eu2+phosphor for LEDs. Displays 49, 35–39 (2017).  https://doi.org/10.1016/j.displa.2017.05.002 CrossRefGoogle Scholar
  34. 34.
    Y.C. Li, Y.H. Chang, Y.F. Lin, Y.J. Lin, Y.S. Chang, High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+. Appl. Phys. Lett. 89(8), 5–8 (2006).  https://doi.org/10.1063/1.2337275 CrossRefGoogle Scholar
  35. 35.
    Z. Sun, M. Wang, Z. Yang, Z. Jiang, K. Liu, Z. Ye, Enhanced red emission from Eu3 + -Bi3+ co-doped Ca2YSbO6 phosphors for white light-emitting diode. J. Alloys Compd. 658, 453–458 (2016).  https://doi.org/10.1016/j.jallcom.2015.10.242 CrossRefGoogle Scholar
  36. 36.
    H. Deng, Z. Gao, N. Xue, J.H. Jeong, R. Yu, A novel Eu3+-doped garnet-type tellurate red-emitting phosphor with high thermal stability and color purity. J. Lumin. 192, 684–689 (2017).  https://doi.org/10.1016/j.jlumin.2017.07.063 CrossRefGoogle Scholar
  37. 37.
    X. Zhou, X. Yang, T. Xiao et al., Luminescence properties and energy transfer of host sensitized CaMoO4:Tb3+ green phosphors. J. Rare Earths 31(7), 655–659 (2013).  https://doi.org/10.1016/S1002-0721(12)60337-8 CrossRefGoogle Scholar
  38. 38.
    D. Alexander, K. Thomas, S. Sisira et al., Eu3+ activated terbium oxalate nanocrystals: A novel luminescent material with delayed concentration quenching and tunable multicolour emission. Opt. Mater. (Amst). 86, 366–375 (2018).  https://doi.org/10.1016/j.optmat.2018.10.013 CrossRefGoogle Scholar
  39. 39.
    J. Kuang, Y. Liu, Observation of energy transfer from host to rare earth ions in Pr3+-doped CdSiO3 long-lasting phosphor. Chem. Phys. Lett. 424(1–3), 58–62 (2006).  https://doi.org/10.1016/j.cplett.2006.04.033 CrossRefGoogle Scholar
  40. 40.
    L. Han, Y. Wang, Y. Wang, J. Zhang, Y. Tao, Observation of efficient energy transfer from host to rare-earth ions in KBaY(BO3)2:Tb3+ phosphor for plasma display panel. J. Alloys Compd. 551, 485–489 (2013).  https://doi.org/10.1016/j.jallcom.2012.11.011 CrossRefGoogle Scholar
  41. 41.
    X. Huang, H. Guo, B. Li, Eu3+-activated Na2Gd(PO4)(MoO4): a novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J. Alloys Compd. 720, 29–38 (2017).  https://doi.org/10.1016/j.jallcom.2017.05.251 CrossRefGoogle Scholar
  42. 42.
    S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, V. Natarajan, Intense red emitting monoclinic LaPO4: Eu3+ nanoparticles: host–dopant energy transfer dynamics and photoluminescence properties. RSC Adv. 5(72), 58832–58842 (2015).  https://doi.org/10.1039/C5RA09076H CrossRefGoogle Scholar
  43. 43.
    H. Zhou, Q. Wang, Y. Jin, Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10: Bi3+, Eu3+ for near UV LEDs. J. Mater. Chem. C 3(42), 11151–11162 (2015).  https://doi.org/10.1039/C5TC02514A CrossRefGoogle Scholar
  44. 44.
    M.S. Sajna, S. Gopi, V.P. Prakashan et al., Spectroscopic investigations and phonon side band analysis of Eu3+-doped multicomponent tellurite glasses. Opt. Mater. (Amst). 70, 31–40 (2017).  https://doi.org/10.1016/j.optmat.2017.04.064 CrossRefGoogle Scholar
  45. 45.
    S.K. Gupta, C. Reghukumar, R.M. Kadam, Eu3+ local site analysis and emission characteristics of novel Nd2Zr2O7: Eu phosphor: insight into the effect of europium concentration on its photoluminescence properties. RSC Adv. 6(59), 53614–53624 (2016).  https://doi.org/10.1039/C6RA11698A CrossRefGoogle Scholar
  46. 46.
    J. Liang, S. Zhao, X. Yuan, Z. Li, A novel double perovskite tellurate Eu3+-doped Sr2MgTeO6 red-emitting phosphor with high thermal stability. Opt. Laser Technol. 101, 451–456 (2018).  https://doi.org/10.1016/j.optlastec.2017.11.046 CrossRefGoogle Scholar
  47. 47.
    P. Halappa, A. Mathur, D. Marie-Helene, C. Shivakumara, Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: structure and photoluminescence properties. J. Alloys Compd. 740, 1086–1098 (2018).  https://doi.org/10.1016/j.jallcom.2018.01.087 CrossRefGoogle Scholar
  48. 48.
    Y. Zhang, W. Gong, G. Ning, Novel red-emitting LiGd(WO4)2: Eu3+ phosphor with high thermal stability and high color purity for application in white light-emitting diodes. New J. Chem. 40(12), 10136–10143 (2016).  https://doi.org/10.1039/C6NJ02734B CrossRefGoogle Scholar
  49. 49.
    Z.-M. Li, L.-G. Deng, S.-C. Zhao et al., Photoluminescence properties of a new orange-red-emitting Sm3+-La3SbO7 phosphor. Luminescence 31(2), 462–467 (2016).  https://doi.org/10.1002/bio.2983 CrossRefGoogle Scholar
  50. 50.
    W. Xiao, X. Zhang, Z. Hao et al., Blue-emitting K2Al2B2O7:Eu2+ phosphor with high thermal stability and high color purity for near-UV-pumped white light-emitting diodes. Inorg. Chem. 54(7), 3189–3195 (2015).  https://doi.org/10.1021/ic502773t CrossRefGoogle Scholar
  51. 51.
    P. Jena, S.K. Gupta, N.K. Verma, A.K. Singh, R.M. Kadam, Energy transfer dynamics and time resolved photoluminescence in BaWO4:Eu3+ nanophosphors synthesized by mechanical activation. New J. Chem. 41(17), 8947–8958 (2017).  https://doi.org/10.1039/C7NJ01249G CrossRefGoogle Scholar
  52. 52.
    R.S. Yadav, R.K. Dutta, M. Kumar, A.C. Pandey, Improved color purity in nano-size Eu3+-doped YBO3 red phosphor. J. Lumin. 129(9), 1078–1082 (2009).  https://doi.org/10.1016/j.jlumin.2009.04.032 CrossRefGoogle Scholar
  53. 53.
    L. Mishra, A. Sharma, A.K. Vishwakarma et al., White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121–127 (2016).  https://doi.org/10.1016/j.jlumin.2015.08.063 CrossRefGoogle Scholar
  54. 54.
    X. Zhang, L. Zhou, M. Gong, High-brightness Eu3+-doped Ca3(PO4) 2 red phosphor for NUV light-emitting diodes application. Opt. Mater. (Amst). 35(5), 993–997 (2013).  https://doi.org/10.1016/j.optmat.2012.12.023 CrossRefGoogle Scholar
  55. 55.
    C. Shivakumara, R. Saraf, P. Halappa, White luminescence in Dy3+ doped BiOCl phosphors and their Judd-Ofelt analysis. Dye Pigment 126, 154–164 (2016).  https://doi.org/10.1016/j.dyepig.2015.10.032 CrossRefGoogle Scholar
  56. 56.
    R. Shrivastava, J. Kaur, M. Dash, Studies on white light emission of Sr2MgSi2O7 doped with Dy3+ phosphors. Superlattices Microstruct. 82, 262–268 (2015).  https://doi.org/10.1016/j.spmi.2015.02.027 CrossRefGoogle Scholar
  57. 57.
    B. Devakumar, P. Halappa, C. Shivakumara, Dy3+/Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications. Dye Pigment 137, 244–255 (2017).  https://doi.org/10.1016/j.dyepig.2016.10.016 CrossRefGoogle Scholar
  58. 58.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17(2), 142–144 (1992).  https://doi.org/10.1002/col.5080170211 CrossRefGoogle Scholar
  59. 59.
    A.R. Dhobale, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm. J. Lumin. 132(2), 293–298 (2012).  https://doi.org/10.1016/j.jlumin.2011.09.004 CrossRefGoogle Scholar
  60. 60.
    C.H. Huang, T.M. Chen, Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg. Chem. 50(12), 5725–5730 (2011).  https://doi.org/10.1021/ic200515w CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pure & Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations