Advertisement

Impact of CNT on structural, thermal, and dielectric properties of the multicomponent Cu5Se75Te10In10 chalcogenide glassy system

  • Priyanka Jaiswal
  • D. K. DwivediEmail author
Article
  • 9 Downloads

Abstract

Multicomponent MWCNT-added glasses of the [(Cu5Se75Te10In10)100−x(CNT)x] (x = 0, 1, and 2) system have been developed by a cost-effective melt-quench method that is also known for its convenience. Structural properties have been studied using XRD and FESEM. Differential Scanning Calorimetry scan has been done at a heating rate of 10 K/min which also confirms the glassy nature of the as-prepared and MWCNT-added Cu5Se75Te10In10 composite. The effect of CNTs on transition temperatures, thermal characteristics such as thermal stability and Glass-forming stability has been discussed. The variations of dielectric relaxation of this new composite with temperature and frequency have been investigated from room temperature up to 373 K and frequency regime from 1 Hz to 1 MHz. Moreover, it is also observed that dielectric constant and dielectric loss reduces sharply at the high-frequency side but increases with increase in CNT concentration as well as temperature. The highest dielectric constant value (2000) for 2 wt% MWCNT/Cu5Se75Te10In10 at low temperatures and the low-frequency regime is approximately ten times greater than the host glassy composite Cu5Se75Te10In10 was observed.

Notes

References

  1. 1.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  2. 2.
    M. Pollak, (Institute of Physics and Physical Society, London, 1962)Google Scholar
  3. 3.
    M. Pollak, Philos. Mag. 23, 542 (1971)CrossRefGoogle Scholar
  4. 4.
    A.H. Khafogy, M.S. Abo-Ghazala, M.M. El-Zaidia, A.A. El-Shourbagy, J. Non-Cryst. Solids 278, 127 (2000)Google Scholar
  5. 5.
    J.Y. Shim, S.W. Park, H.K. Baik, Thin Solid Films 292, 31 (1997)CrossRefGoogle Scholar
  6. 6.
    N. Kushwaha, V.S. Kushwaha, R.K. Shukla, A. Kumar, J. Non-Cryst, Solids 351, 3414 (2005)Google Scholar
  7. 7.
    J.M. Saitar, J. Ledru, A. Hamou, G. Saffarini, Phys. B 245, 256 (1998)CrossRefGoogle Scholar
  8. 8.
    K. Kobashi, T. Villmow, T. Andres, L. Haußler, P. Potschke, Smart Mater. Struct. 18, 035008 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Saremi, Solid State Ion. 290, 1 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Saremi, H.J. Barnaby, A. Edwards, M.N. Kozick, ECS Electrochem. Lett. 4, H29–H31 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Rajabi, M. Saremi, H.J. Barnaby, A. Edwards, M.N. Kozicki, M. Mitkova, D. Mahalanabis, Y. Gonzalez-Velo, A. Mahmud, Solid-State Electron. 106, 27 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Saremi, S. Rajabi, H.J. Barnaby, M.N. Kozicki, MRS Proc. 1692, 9–39 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Pumera, S. Sanchez, I. Ichinose, J. Tang, Sens. Actuator. B123, 1195 (2007)CrossRefGoogle Scholar
  14. 14.
    O.L. Kheifets-Kobeleva, V.B. Zlokazov, N.V. Melnikova, L.L. Nugaeva, L.Y. Kobelev, Y.L. Kobelev, Electr. Phys. Status Solidi. 1(2), 299 (2004)CrossRefGoogle Scholar
  15. 15.
    K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York, 2011)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, M. Bernechea, A. Maclachlan, V. Zardetto, M. Creatore, S.A. Haque, G. Konstantatos, Chem. Mater. 27, 3700 (2015)CrossRefGoogle Scholar
  17. 17.
    A.B. Gadkari, J.K. Zope, J. Non-Cryst. Solids 103, 295 (1988)CrossRefGoogle Scholar
  18. 18.
    R. Chinnusamy, Acta Metall. Sin. 28, 567 (2015)CrossRefGoogle Scholar
  19. 19.
    A.N. Upadhyay, R.S. Tiwari, N. Mehta, K. Singh, Mater. Lett. 136, 445 (2014)CrossRefGoogle Scholar
  20. 20.
    A.N. Upadhyay, K. Singh, Mater. Res. Express. 3, 125201 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Stehlik, J. Orava, T. Kohoutek, T. Wagner, M. Frumar, V. Zima, T. Hara, Y. Matsui, K. Ueda, M. Pumera, J. Solid State Chem. 183, 144 (2010)CrossRefGoogle Scholar
  22. 22.
    P.M. Ajayan, M. Tour James, Nature 447, 1066 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Ganaie, M. Zulfequar, Mater. Chem. Phys. 177, 455 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Jaiswal, D.K. Dwivedi, Mater. Res. Express. 6, 015202 (2018)CrossRefGoogle Scholar
  25. 25.
    H.E. Atyia, J. Non-Cryst. Solids 391, 83 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, J. Qiu, Adv. Mater. 26, 7966 (2014)CrossRefGoogle Scholar
  27. 27.
    G.C. Das, M.B. Bewer, D.R. Uhlmann, J. Non-Cryst. Solids 7, 251 (1972)CrossRefGoogle Scholar
  28. 28.
    G. Lucovsky, J. Non-Cryst. Solids 97–98, 155 (1987)CrossRefGoogle Scholar
  29. 29.
    A. Eisenberg, J. Polym. Sci. B 1, 177 (1963)CrossRefGoogle Scholar
  30. 30.
    S. Mahadevan, A. Giridhar, A.K. Singh, J. Non-Cryst. Solids 88, 11 (1986)CrossRefGoogle Scholar
  31. 31.
    A. Giridhar, S. Mahadevan, J. Non-Cryst. Solids 151, 245 (1992)CrossRefGoogle Scholar
  32. 32.
    S.R. Joshi, A. Pratap, N.S. Saxena, M.P. Saxena, J. Mater. Sci. Lett. 13, 77 (1994)CrossRefGoogle Scholar
  33. 33.
    T.F. Scott, W.D. Cook, J.S. Forsythe, Eur. Polym. J. 38, 705 (2002)CrossRefGoogle Scholar
  34. 34.
    N.M. Alves, J.L.G. Ribelle, J.F. Mano, Polymer 46, 491 (2005)CrossRefGoogle Scholar
  35. 35.
    T. Sasaki, T. Uchida, K. Sakurai, J. Polym. Sci. B 44, 1958 (2006)CrossRefGoogle Scholar
  36. 36.
    P. Jaiswal, D.K. Dwivedi, Mater. Res. Express. 6, 055203 (2019)CrossRefGoogle Scholar
  37. 37.
    I.S. Ram, K. Singh, J Alloys Compd. 576, 358 (2013)CrossRefGoogle Scholar
  38. 38.
    I.S. Ram, K. Singh, Phys. B 407, 3472 (2012)CrossRefGoogle Scholar
  39. 39.
    E.D. Zanotto, J. Non-Cryst. Solids 74, 373 (1985)CrossRefGoogle Scholar
  40. 40.
    E.D. Zanotto, J. Non-Cryst, Solids 89, 361 (1987)Google Scholar
  41. 41.
    J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981)CrossRefGoogle Scholar
  42. 42.
    A.E. Stearn, H. Eyring, J. Chem. Phys. 5, 113 (1937)CrossRefGoogle Scholar
  43. 43.
    P.K. Singh, D.K. Dwivedi, Results Phys. 12, 223 (2019)CrossRefGoogle Scholar
  44. 44.
    A. Upadhyay, R. Tiwari, K. Singh, Mater. Lett. 164, 449 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000)CrossRefGoogle Scholar
  46. 46.
    Z.M. Dang, C.W. Nan, D. Xie, Y.H. Zhang, S.C. Tjong, Appl. Phys. Lett. 85, 97 (2004)CrossRefGoogle Scholar
  47. 47.
    L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005)CrossRefGoogle Scholar
  48. 48.
    M.J. Jiang, Z.M. Dang, H.P. Xu, Appl. Phys. Lett. 9, 042914 (2007)CrossRefGoogle Scholar
  49. 49.
    Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Appl. Phys. Lett. 89, 072902 (2006)CrossRefGoogle Scholar
  50. 50.
    K. Ahmad, W. Pan, S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006)CrossRefGoogle Scholar
  51. 51.
    Q. Li, X. Qingzhong, H. Lanzhong, X. Gao, Q. Zheng, Compos. Sci. Technol. 68, 2290 (2008)CrossRefGoogle Scholar
  52. 52.
    T.M. Stevels Handbuch der Physik, ed. by Flugged (Springer, Berlin, 1957) p. 350Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amorphous Semiconductor Research Lab, Department of Physics and Material ScienceMadan Mohan Malaviya University of TechnologyGorakhpurIndia

Personalised recommendations